## R-torsion and zeta functions for analytic Anosov flows on 3-manifolds

HTML articles powered by AMS MathViewer

- by Héctor Sánchez-Morgado PDF
- Trans. Amer. Math. Soc.
**348**(1996), 963-973 Request permission

## Abstract:

We improve previous results relating R-torsion, for an acyclic representation of the fundamental group, with a special value of the torsion zeta function of an analytic Anosov flow on a 3-manifold. By using the new techniques of Rugh and Fried we get rid of the unpleasent assumptions about the regularity of the invariant foliations.## References

- David Fried,
*Fuchsian groups and Reidemeister torsion*, The Selberg trace formula and related topics (Brunswick, Maine, 1984) Contemp. Math., vol. 53, Amer. Math. Soc., Providence, RI, 1986, pp. 141–163. MR**853556**, DOI 10.1090/conm/053/853556 - David Fried,
*Lefschetz formulas for flows*, The Lefschetz centennial conference, Part III (Mexico City, 1984) Contemp. Math., vol. 58, Amer. Math. Soc., Providence, RI, 1987, pp. 19–69. MR**893856** - Fried, D. Meromorphic Zeta Functions for Analytic Flows. Preprint 1993.
- Nicolai T. A. Haydn,
*Meromorphic extension of the zeta function for Axiom A flows*, Ergodic Theory Dynam. Systems**10**(1990), no. 2, 347–360. MR**1062762**, DOI 10.1017/S0143385700005587 - Ratner, M. Markov decomposition for a Y-flow on a three-dimensional manifold.
*Math. Notes***6**(1968) 880-886. - David Ruelle,
*The thermodynamic formalism for expanding maps*, Comm. Math. Phys.**125**(1989), no. 2, 239–262. MR**1016871**, DOI 10.1007/BF01217908 - Hans H. Rugh,
*The correlation spectrum for hyperbolic analytic maps*, Nonlinearity**5**(1992), no. 6, 1237–1263. MR**1192517**, DOI 10.1088/0951-7715/5/6/003 - Rugh, H. Generalized Fredholm Determinants and Selberg Zeta Functions for Axiom A Dynamical Systems. To appear in
*Ergod. Th. and Dynam. Sys.* - Sánchez-Morgado, H. Lefschetz formulae for Anosov flows on 3-manifolds.
*Ergod. Th. and Dynam. Sys.***13**(1993) 335-347.

## Additional Information

**Héctor Sánchez-Morgado**- Affiliation: Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria C. P. 04510, México D. F., México
- MR Author ID: 340702
- ORCID: 0000-0003-3981-408X
- Email: hector@gauss.matem.unam.mx
- Received by editor(s): November 18, 1994
- Additional Notes: Partially supported by DGAPA-UNAM IN-103792
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**348**(1996), 963-973 - MSC (1991): Primary 58F15, 58F20, 58G10
- DOI: https://doi.org/10.1090/S0002-9947-96-01611-X
- MathSciNet review: 1348868