Comparative asymptotics for perturbed orthogonal polynomials
HTML articles powered by AMS MathViewer
- by Franz Peherstorfer and Robert Steinbauer
- Trans. Amer. Math. Soc. 348 (1996), 1459-1486
- DOI: https://doi.org/10.1090/S0002-9947-96-01498-5
- PDF | Request permission
Abstract:
Let $\{\Phi _n\}_{n\in \mathbb N_0}$ and $\{\widetilde \Phi _n\}_{n\in \mathbb N_0}$ be such systems of orthonormal polynomials on the unit circle that the recurrence coefficients of the perturbed polynomials $\widetilde \Phi _n$ behave asymptotically like those of $\Phi _n$. We give, under weak assumptions on the system $\{\Phi _n\}_{n\in \mathbb N_0}$ and the perturbations, comparative asymptotics as for $\widetilde \Phi _n^*(z)/ \Phi _n^*(z)$ etc., $\Phi _n^*(z):= z^n\bar \Phi _n(\frac 1z)$, on the open unit disk and on the circumference mainly off the support of the measure $\sigma$ with respect to which the $\Phi _n$’s are orthonormal. In particular these results apply if the comparative system $\{\Phi _n\} _{n\in \mathbb N_0}$ has a support which consists of several arcs of the unit circumference, as in the case when the recurrence coefficients are (asymptotically) periodic.References
- N. I. Akhiezer, On polynomials on a circular arc, Soviet Math. Dokl. 1 (1960), 31–34.
- G. Freud, Orthogonal polynomials, Pergamon Press, 1971.
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- Ja. L. Geronimus, Polynomials orthogonal on a circle and interval, International Series of Monographs on Pure and Applied Mathematics, Vol. 18, Pergamon Press, New York-Oxford-London-Paris, 1960. Translated from the Russian by D. E. Brown; edited by Ian N. Sneddon. MR 0133642
- Ja. L. Geronimus, The application of orthogonal polynomials to the study of certain boundary properties of functions, Zap. Meh.-Mat. Fak. i Har′kov. Mat. Obšč. (4) 27 (1961), 97–112 (Russian). MR 0249629
- —, Polynomials orthogonal on a circle and their applications, Amer. Math. Soc. Transl. 3 (1962), 1–78.
- Paul Koosis, Introduction to $H_{p}$ spaces, London Mathematical Society Lecture Note Series, vol. 40, Cambridge University Press, Cambridge-New York, 1980. With an appendix on Wolff’s proof of the corona theorem. MR 565451
- Attila Máté, Paul Nevai, and Vilmos Totik, Extensions of Szegő’s theory of orthogonal polynomials. II, III, Constr. Approx. 3 (1987), no. 1, 51–72, 73–96. MR 892168, DOI 10.1007/BF01890553
- Attila Máté, Paul Nevai, and Vilmos Totik, Extensions of Szegő’s theory of orthogonal polynomials. II, III, Constr. Approx. 3 (1987), no. 1, 51–72, 73–96. MR 892168, DOI 10.1007/BF01890553
- Attila Máté, Paul Nevai, and Vilmos Totik, Szegő’s extremum problem on the unit circle, Ann. of Math. (2) 134 (1991), no. 2, 433–453. MR 1127481, DOI 10.2307/2944352
- Paul Nevai and Walter Van Assche, Compact perturbations of orthogonal polynomials, Pacific J. Math. 153 (1992), no. 1, 163–184. MR 1145921
- L. Golinskii, P. Nevai, and W. Van Assche, Perturbation of orthogonal polynomials on an arc of the unit circle J. Approx. Theory (to appear).
- Franz Peherstorfer, On the asymptotic behaviour of functions of the second kind and Stieltjes polynomials and on the Gauss-Kronrod quadrature formulas, J. Approx. Theory 70 (1992), no. 2, 156–190. MR 1172017, DOI 10.1016/0021-9045(92)90083-Z
- —, A special class of polynomials orthogonal on the unit circle including the associated polynomials, Constr. Approx. (to appear).
- F. Peherstorfer and R. Steinbauer, Orthogonal polynomials on arcs of the unit circle, I, J. Approx. Theory (to appear).
- —, Characterization of orthogonal polynomials with respect to a functional, J. Comput. Appl. Math. (to appear).
- —, Asymptotic behaviour of orthogonal polynomials with asymptotically periodic recurrence coefficients, J. Approx. Theory (to appear).
- R. Steinbauer, Orthogonalpolynome auf mehreren Bögen des komplexen Einheitskreises, Ph.D. dissertation, Universitätsverlag Rudolf Trauner, Linz, 1995.
- E. A. Rakhmanov, On the asymptotics of the ratio of orthogonal polynomials, Math. USSR-Sb. 32 (1977), 199–213.
- —, On the asymptotics of the ratio of orthogonal polynomials, II, Math. USSR-Sb. 46 (1983), 105–117.
- —, On asymptotics of polynomials orthogonal on the unit circle with weights not satisfying Szegö’s condition, Math. USSR-Sb. 58 (1987), 149–167.
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975. MR 0372517
- Walter Van Assche, Asymptotics for orthogonal polynomials and three-term recurrences, Orthogonal polynomials (Columbus, OH, 1989) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 294, Kluwer Acad. Publ., Dordrecht, 1990, pp. 435–462. MR 1100305
Bibliographic Information
- Franz Peherstorfer
- Affiliation: Institut für Mathematik, Johannes Kepler Universität Linz, A-4040 Linz, Austria
- Email: franz.peherstorfer@jk.uni-linz.ac.at
- Robert Steinbauer
- Affiliation: Institut für Mathematik, Johannes Kepler Universität Linz, A-4040 Linz, Austria
- Email: robert.steinbauer@jk.uni-linz.ac.at
- Received by editor(s): March 5, 1994
- Received by editor(s) in revised form: January 5, 1995
- Additional Notes: Supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung, Projektnummer P9267-PHY
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 1459-1486
- MSC (1991): Primary 42C05
- DOI: https://doi.org/10.1090/S0002-9947-96-01498-5
- MathSciNet review: 1322954