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NONSMOOTH SEQUENTIAL ANALYSIS IN ASPLUND SPACES

BORIS S. MORDUKHOVICH AND YONGHENG SHAO

Abstract. We develop a generalized differentiation theory for nonsmooth
functions and sets with nonsmooth boundaries defined in Asplund spaces. This
broad subclass of Banach spaces provides a convenient framework for many im-

portant applications to optimization, sensitivity, variational inequalities, etc.
Our basic normal and subdifferential constructions are related to sequential
weak-star limits of Fréchet normals and subdifferentials. Using a variational
approach, we establish a rich calculus for these nonconvex limiting objects
which turn out to be minimal among other set-valued differential construc-
tions with natural properties. The results obtained provide new developments
in infinite dimensional nonsmooth analysis and have useful applications to
optimization and the geometry of Banach spaces.

1. Introduction

It is well known that nonsmooth functions, sets with nonsmooth boundaries and
set-valued mappings appear naturally and frequently in various areas of mathe-
matics and applications. We refer the reader to [2, 10, 11, 39, 44, 48, 63] for many
examples and motivations, especially related to optimization, stability, variational
systems, and control systems. A systematic study of the local behavior of nondiffer-
entiable objects is accomplished in the framework of nonsmooth analysis, which has
become an active and fruitful area of mathematics, rich with applications. The term
“nonsmooth analysis” was coined in the 1970s by Francis Clarke, who performed
pioneering work in this area for fairly general nonsmooth objects.

The heart of nonsmooth analysis is the generalized differentiation of nonsmooth
functions. Over the last twenty years great progress has been made in the de-
velopment and applications of workable calculus for various set-valued generalized
derivatives; see [2, 5, 10, 11, 24, 26, 30, 39, 44, 46, 49, 56, 59, 63, 68, 69] and ref-
erences therein. While the subdifferential theory in finite dimensions has been well
developed, there still exist many open principal questions in infinite dimensional
spaces.

There are several natural ways to define general subdifferentials satisfying useful
calculus rules. In particular, it can be done taking limits of more primitive subd-
ifferential constructions which do not possess such a calculus. It is important that
limiting constructions depend not only on the choice of primitive objects but also
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Asplund spaces, variational principles, Fréchet normals and subdifferentials, sequential limits.
This research was partially supported by the National Science Foundation under grants DMS–

9206989 and DMS-9404128.

c©1996 American Mathematical Society

1235



1236 BORIS S. MORDUKHOVICH AND YONGHENG SHAO

on the character of the limit: topological or sequential. The topological way al-
lows one to develop useful subdifferentials in general infinite dimensional settings,
but it may lead to rather complicated and broad constructions. The sequential
way usually leads to smaller and more convenient objects, but it requires some
special geometric properties of spaces in question; see discussions and examples in
Borwein-Fitzpatrick [4].

The sequential nonconvex subdifferential constructions in Banach spaces were
first introduced in Kruger-Mordukhovich [34, 35] on the basis of sequential limits
of Fréchet ε-normals and subdifferentials. Such limiting normal cone and sub-
differential appeared as infinite dimensional extensions of the corresponding finite
dimensional constructions in Mordukhovich [41, 42] motivated by applications to
optimization and control. Useful properties of those and related constructions were
revealed mainly for Banach spaces with Fréchet differentiable renorms; see, e.g.,
[5, 8, 25, 29, 31, 32, 33, 34, 35, 38, 39, 40, 44, 54, 65, 67] and the subsequent
sections for more details.

On the other line of development, a series of infinite dimensional extensions of
the nonconvex constructions in [41, 42] were introduced and studied by Ioffe [20, 23,
24] on the basis of topological limits of Dini subdifferentials and ε-subdifferentials.
Such constructions, called “approximate subdifferentials”, are well defined in more
general spaces, but all of them (including their “nuclei”) may be broader than the
Kruger-Mordukhovich extension even for Lipschitz functions on Banach spaces with
Fréchet differentiable renorms; see Section 9.

This paper is devoted to the development of sequential subdifferential and related
constructions in infinite dimensions, mostly for the class of Banach spaces called
Asplund spaces. This class is sufficiently rich and well investigated in the geometric
theory of Banach spaces and various applications; see [1, 16, 55] and references
therein. In particular, it includes every Banach space with a Fréchet differentiable
renorm (hence any reflexive space) and all spaces with separable duals. Moreover,
there are Asplund spaces which fail to have even a Gâteaux differentiable renorm.

Here we use the same sequential limits of Fréchet ε-normals and subdifferentials
as in [34, 35], observing, in addition, that one can let ε = 0 in all the formulas for the
case of Asplund spaces; see Section 2. For such nonconvex and not topologically
closed constructions we develop a comprehensive subdifferential calculus involv-
ing lower semicontinuous (l.s.c.) functions defined on arbitrary Asplund spaces.
This calculus includes, in particular, sum rules, chain rules, mean value theorems,
subdifferentiation of marginal/value functions, etc. Most of the results obtained
provide new information for spaces with Fréchet differentiable renorms; many of
them are new even for the case of Hilbert spaces, where our constructions coin-
cide with sequential limits of proximal normals/subgradients. Note that a number
of important calculus results for the sequential constructions under consideration
hold in any Banach spaces, where taking ε > 0 in the original limiting formulas is
essential; see [52] and corresponding remarks in the text below.

Our approach to subdifferential calculus is mainly based on an extremal principle
for set systems that is expressed in terms of Fréchet normals and actually turns out
to be an extremal characterization of Asplund spaces; see [51]. This approach is
essentially geometric, as well as variational, being related to corresponding gener-
alizations of the classical separation theorem to the case of nonconvex sets. In this
way we are able to obtain calculus results for nonconvex sequential subdifferentials
of extended-real-valued functions that may not be locally Lipschitzian. The latter
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case includes the calculus of normal cones to closed sets, which is of particular
importance for applications to sensitivity analysis; cf. [47, 48, 53].

The remainder of the paper is organized as follows. In Section 2 we present
basic definitions and preliminaries needed in the sequel. Here we also obtain equiv-
alent representations of the Kruger-Mordukhovich limiting normal cone and related
subdifferential/coderivative constructions in terms of sequential limits of the corre-
sponding Fréchet (not ε-Fréchet) counterparts in Asplund spaces.

In Section 3 we study a concept of extremality for systems of closed sets in Ba-
nach spaces which is at the ground of our approach to subdifferential calculus. In
the case of Asplund spaces we obtain a necessary condition for extremal points of
set systems in terms of Fréchet normals. Under some additional local compactness
assumptions we establish necessary extremality conditions in terms of the noncon-
vex limiting normal cone. These results imply, in particular, a nonconvex analogue
of the Bishop-Phelps densitity theorem and its limiting counterpart in Asplund
spaces.

Section 4 is devoted to the fundamental calculus results about representing the
(limiting) subdifferentials and singular subdifferentials for sums of l.s.c. extended-
real-valued functions defined on Asplund spaces. Based on the extremal principle
in Section 3, we prove refined sum rules for those subdifferentials under minimal
assumptions. As a corollary we obtain a formula for representing the nonconvex
normal cone to the intersection of closed sets.

In Section 5 we consider single-valued continuous mappings between Banach
spaces. The main purpose is to establish relationships between the coderivative for
such a mapping and the subdifferential of its Lagrange scalarization. We prove
the principal scalarization formula in the form of equality for a class of strictly
Lipschitzian mappings defined on Asplund spaces.

Section 6 is devoted to the subdifferentiation of general marginal functions that
can be viewed as value functions in problems of parametric optimization. In this
way we obtain a series of chain rules for the nonconvex sequential subdifferentials
of compositions between nonsmooth mappings in Asplund spaces. The chain rules
are proved in both inclusion and equality forms under minimal assumptions.

In Section 7 we obtain more calculus rules for the subdifferentiation of maxima,
minima, products, and quotients of real-valued functions, as well as for relations
between “partial” and “full” subdifferentials for functions of two variables. Using
the chain rule in Section 6, we establish a generalization of the classical mean value
theorem for continuous functions defined on Asplund spaces.

Section 8 is devoted to an approximate mean value theorem of Zagrodny’s type
[70] for l.s.c. functions. We prove refined results of this kind in terms of Fréchet sub-
gradients in Asplund spaces and obtain some useful applications, including charac-
terizations of local Lipschitzian behavior and exact relationships between our basic
nonconvex limiting objects and Clarke’s normal cone and subdifferential.

In the concluding Section 9 we study the interrelation between our basic se-
quential constructions and Ioffe’s constructions of approximate subdifferentials for
the case of Asplund spaces. Invoking recent results and examples in Borwein and
Fitzpatrick [4], we prove that our sequential subdifferential for l.s.c. functions is
included in any of the approximate subdifferentials and their “nuclei”, being strictly
better even in the case of Lipschitz functions on Fréchet differentiable spaces. Fur-
thermore, the weak-star closures of the sequential objects give exactly the so-called
G-normal cones and subdifferentials, while Clarke’s constructions coincide with
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the weak-star closures of the corresponding convex hulls. We also establish the
minimality of the basic sequential subdifferential for l.s.c. functions among any
subdifferential constructions satisfying some natural requirements.

Our notation is basically standard. For any Banach space X we denote its norm
by ‖ · ‖ and consider the dual space X? equipped with the weak-star topology w?,
where 〈·, ·〉 means the canonic pairing. As usual, B and B? stand for the unit closed
balls in the space and dual space in question. The symbol Br(x) denotes the closed
ball with center x and radius r. Recall that cl Ω and co Ω mean, respectively, the
closure and the convex hull of an arbitrary nonempty set Ω ⊂ X, while the notation
cl? is used for the weak-star topological closure in X?. The adjoint (dual) operator
to a linear continuous operator A is denoted by A?.

In contrast to the case of single-valued mappings Φ : X → Y , the symbol
Φ : X ⇒ Y stands for a multifunction from X into Y . We denote the graph and
kernel of Φ by

gph Φ := {(x, y) ∈ X × Y | y ∈ Φ(x)}, ker Φ := {x ∈ X| 0 ∈ Φ(x)}.
In this paper we often consider multifunctions Φ from X into the dual space X?.

For such objects, the expression

lim sup
x→x̄

Φ(x)

always means the sequential Kuratowski-Painlevé upper limit with respect to the
norm topology in X and the weak-star topology in X?, i.e.,

lim sup
x→x̄

Φ(x) := {x? ∈ X?| ∃ sequences xk → x̄ and x?k
w?→ x?

with x?k ∈ Φ(xk) for all k = 1, 2, . . . }.

If ϕ : X → R̄ := [−∞,∞] is an extended-real-valued function, then, as usual,

domϕ := {x ∈ X with |ϕ(x)| <∞}, epi ϕ := {(x, µ) ∈ X ×R| µ ≥ ϕ(x)}.
In this case, lim supϕ(x) and lim inf ϕ(x) denote the upper and lower limits of such
(scalar) functions in the classical sense. Depending on context, the symbols x

ϕ→ x̄

and x
Ω→ x̄ mean, respectively, that x → x̄ with ϕ(x) → ϕ(x̄) and x → x̄ with

x ∈ Ω.
Throughout the paper we use the convention that a + ∅ = ∅ + b = ∅ for any

elements a and b and the empty set ∅. Some special notation will be introduced
and explaned in Sections 2 and 9.

2. Basic definitions and representations

This section contains preliminary material on the basic generalized differentia-
bility concepts studied in the paper. We also present useful representations of these
constructions for the case of Asplund spaces. Developing a geometric approach to
the generalized differentiation, let us start with the definitions of normal elements
to arbitrary sets in Banach spaces as in Kruger-Mordukhovich [34, 35].

2.1. Definition. Let Ω be a nonempty subset of the Banach space X and let ε ≥ 0.
(i) Given x ∈ cl Ω, the nonempty set

N̂ε(x; Ω) := {x? ∈ X?| lim sup
u

Ω→x

〈x?, u− x〉
‖u− x‖ ≤ ε}(2.1)
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is called the set of Fréchet ε-normals to Ω at x. When ε = 0, the set (2.1) is a cone
which is called the Fréchet normal cone to Ω at x and is denoted by N̂(x; Ω). If
x /∈ cl Ω, we let N̂ε(x; Ω) = ∅ for all ε ≥ 0.

(ii) Let x̄ ∈ cl Ω. The nonempty cone

N(x̄; Ω) := lim sup
x→x̄, ε↓0

N̂ε(x; Ω)(2.2)

is called the normal cone to Ω at x̄. We let N(x̄; Ω) = ∅ for x̄ /∈ cl Ω.

Note that the normal cone (2.2), in constrast to (2.1) for ε > 0, does not change
if one replaces the norm ‖ · ‖ by another equivalent norm in X. In the finite dimen-
sional case X = Rn, the normal cone (2.2) coincides with the one in Mordukhovich
[41]:

N(x̄; Ω) = lim sup
x→x̄

[cone(x−Π(x,Ω))]

where “cone” means the conic hull of a set and Π(x,Ω) is the multi-valued Euclidean
projector of x on the closure of Ω.

Let us observe that the set of Fréchet ε-normals (2.1) is convex for any ε ≥ 0 while
the normal cone (2.2) is nonconvex even in simple finite dimensional situations (e.g.,
for Ω = gph |x| at x̄ = 0 ∈ R2). If the space X is infinite dimensional, the weak-
star topology of X? is not sequential and the sequential upper limit in (2.2) does
not ensure that the set N(x̄; Ω) is closed in both norm and weak-star topologies of
X?. Recently Fitzpatrick (personal communication) provided such examples in the
Hilbert case X = l2; cf. also [4]. Nevertheless, this limiting normal cone possesses a
much broader spectrum of useful properties in comparison with the Fréchet normal
cone N̂(x̄; Ω) and its ε-perturbations (2.1); see [8, 11, 22, 25, 26, 27, 29, 31, 32,
33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 63, 65] and
references therein for more details and related material.

It follows directly from (2.2) that

N̂(x̄; Ω) ⊂ N(x̄; Ω)(2.3)

for any set Ω ⊂ X and any point x̄ ∈ cl Ω. The set Ω is called regular at x̄ if (2.3)
holds as equality.

The class of regular sets includes all convex sets for which

N̂ε(x̄; Ω) = {x? ∈ X?|〈x?, x− x̄〉 ≤ ε‖x− x̄‖ for any x ∈ Ω} ∀ε ≥ 0

and both cones in (2.3) coincide with the normal cone of convex analysis. In
general, (2.3) does not hold as equality in many common situations important for
applications.

In particular, such a regularity is always broken for finite dimensional sets which
are nonsmooth Lipschitzian manifolds in the sense of Rockafellar [62], i.e., they can
be locally represented as graphs of nonsmooth Lipschitz continuous functions. This
class of sets covers graphs of maximal monotone operators and includes subdiffer-
ential mappings for convex, concave, and saddle functions; we refer the reader to
[48, 62] for more details and discussions. It turns out that such graphical sets natu-
rally appear in the following derivative-like constructions for multifunctions which
are realizations of the geometric (graphical) approach to differentiation going back
to Fermat.
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2.2. Definition. Let Φ : X ⇒ Y be a multifunction between Banach spaces X
and Y , and let (x̄, ȳ) ∈ cl gph Φ. The multifunction D?Φ(x̄, ȳ) from Y ? into X?

defined by

D?Φ(x̄, ȳ)(y?) := {x? ∈ X?| (x?,−y?) ∈ N((x̄, ȳ); gph Φ)}(2.4)

is called the coderivative of Φ at (x̄, ȳ). The symbolD?Φ(x̄)(y?) is used in (2.4) when
Φ is single-valued at x̄ and ȳ = Φ(x̄). We let D?Φ(x̄, ȳ)(y?) = ∅ if (x̄, ȳ) /∈ cl gph Φ.

In the finite dimensional setting the coderivative (2.4) was introduced and stud-
ied in [42, 44, 49]. Defining by analogy the Fréchet ε-coderivative as

D̂?
εΦ(x̄, ȳ)(y?) := {x? ∈ X?| (x?,−y?) ∈ N̂ε((x̄, ȳ); gph Φ)} ∀ε ≥ 0,(2.5)

one has the limiting representation

D?Φ(x̄, ȳ)(ȳ?) = lim sup
(x,y,y?)→(x̄,ȳ,ȳ?), ε↓0

D̂?
εΦ(x, y)(y?).

When ε = 0, the construction (2.5) is called the Fréchet coderivative of Φ at (x̄, ȳ)
and is denoted by D̂?Φ(x̄, ȳ). If both spaces X and Y are reflexive, the Fréchet
coderivative is dual to a graphical derivative object (in the vein of Aubin-Frankowska
[2, Chapter 5]) generated by the “weak contingent cone”. On the contrary, the
coderivative (2.4) is not convex-valued and is not dual to any tangentially generated
derivative-type object for multifunctions.

Let Φ be locally single-valued around x̄. Recall that Φ : X → Y is said to be
strictly differentiable at x̄ with the derivative Φ′(x̄) if

lim
x→x̄,u→x̄

Φ(x)− Φ(u)− Φ′(x̄)(x− u)
‖x− u‖ = 0.(2.6)

It is well known that any mapping Φ continuously Fréchet differentiable around x̄ is
strictly differentiable at x̄, but not vice versa. The next proposition can be derived
directly from the definitions; cf. [44, 50].

2.3. Proposition. Let X and Y be Banach spaces and let Φ : X → Y be strictly
differentiable at x̄. Then

D?Φ(x̄)(y?) = D̂?Φ(x̄)(y?) = (Φ′(x̄))?y? ∀y? ∈ Y ?.

Thus the coderivative (2.4) is a proper set-valued generalization of the adjoint
linear operator to the classical strict derivative. In Section 5 we obtain a useful rep-
resentation of the coderivative (2.4) for the class of nonsmooth strictly Lipschitzian
mappings defined on Asplund spaces. In that formula we express the coderivative
of a mapping with values in a Banach space in terms of the following subdifferential
construction for its Lagrange scalarization.

Let ϕ : X → R̄ be an extended-real-valued function defined on a Banach space
and let

Φ(x) = Eϕ(x) := {µ ∈ R | µ ≥ ϕ(x)}
be the associated epigraphical multifunction with gph Φ=epi ϕ. Following the line
in [41, 34, 44], we define the basic subdifferential constructions geometrically as
special cases of the coderivative (2.4) related to the normal cone (2.2).

2.4. Definition. Let x̄ ∈ domϕ. The sets

∂ϕ(x̄) :=D?Eϕ(x̄, ϕ(x̄))(1)={x? ∈ X?| (x?,−1)∈N((x̄, ϕ(x̄)); epi ϕ)},(2.7)
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∂∞ϕ(x̄) :=D?Eϕ(x̄, ϕ(x̄))(0)={x?∈X?| (x?, 0) ∈ N((x̄, ϕ(x̄)); epi ϕ)}(2.8)

are called, respectively, the subdifferential and the singular subdifferential of ϕ at
x̄. We let ∂ϕ(x̄) = ∂∞ϕ(x̄) = ∅ if x̄ /∈ domϕ.

The subdifferential (2.7) generalizes the concept of strict derivative to the case
of nonsmooth functions and is reduced to the subdifferential of convex analysis if
ϕ is convex. It follows from (2.1) and (2.2) that for functions ϕ l.s.c. around x̄, the
subdifferential (2.7) can be represented in the limiting form

∂ϕ(x̄) = lim sup
x
ϕ→x̄, ε↓0

∂̂εϕ(x)(2.9)

in terms of the Fréchet ε-subdifferentials

∂̂εϕ(x) := D̂?
εEϕ(x, ϕ(x))(1) = {x? ∈ X?| (x?,−1) ∈ N̂ε((x, ϕ(x)); epi ϕ)},

(2.10)

where x ∈ domϕ, ε ≥ 0 with ∂̂εϕ(x) = ∅ for x /∈ domϕ. If ε = 0 in (2.10), this set
is called the Fréchet subdifferential of ϕ at x and is denoted by ∂̂ϕ(x).

It follows from (2.9) that ∂̂ϕ(x̄) ⊂ ∂ϕ(x̄). The function ϕ is called subdiffer-
entially regular at x̄ if the latter holds as equality. The class of subdifferentially
regular functions includes all convex functions, smooth (strictly differentiable) func-
tions, “max functions”, etc. On the other hand, such a unilateral regularity fails,
in particular, for nonsmooth concave functions like ϕ(x) = −|x|, x ∈ R, where
∂ϕ(0) = {−1, 1} but ∂̂ϕ(0) = ∅.

In some situations it is more convenient to replace ∂̂εϕ(x) in (2.9) by its analytic
counterpart

∂̃εϕ(x) := {x? ∈ X?| lim inf
u→x

ϕ(u)− ϕ(x)− 〈x?, u− x〉
‖u− x‖ ≥ −ε}, ε ≥ 0,(2.11)

which is effectively used, in particular, in the theory of viscosity solutions [15]. This
follows from a fact proved in Kruger [31, Theorem 1] and Ioffe [25, Proposition 1]:
∂̃εϕ(x) ⊂ ∂̂εϕ(x) and

[x? ∈ ∂̂εϕ(x)] =⇒ [x? ∈ ∂̃ε̃ϕ(x)] for ε̃ := (ε/(1− ε))(1 + ‖x?‖)

when ϕ is l.s.c. at x. Therefore, ∂̃0ϕ(x) = ∂̂ϕ(x), and one has

∂ϕ(x̄) = lim sup
x
ϕ→x̄, ε↓0

∂̃εϕ(x)(2.12)

for any function ϕ : X → R̄ l.s.c. around x̄.
Regarding the singular subdifferential (2.8), we observe that this construction

makes sense only for non-Lipschitzian functions. Indeed, directly from the defini-
tions one can derive the following assertion; see [52].

2.5. Proposition. Let X be a Banach space and let ϕ : X → R̄ be Lipschitz
continuous around x̄. Then ∂∞ϕ(x̄) = {0}.

Further, one can easily check that the normal constructions (2.1) and (2.2) to
any set Ω ⊂ X at x̄ ∈ Ω are expressed in the subdifferential forms

N̂ε(x̄; Ω) = ∂̃εδ(x̄,Ω) for any ε ≥ 0,(2.13)

N(x̄; Ω) = ∂δ(x̄,Ω) = ∂∞δ(x̄,Ω),(2.14)
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where δ(·,Ω) is the indicator function of Ω, that is, δ(x,Ω) = 0 if x ∈ Ω and
δ(x,Ω) =∞ if x /∈ Ω.

On the other hand, the normal cone (2.2) admits a useful representation in terms
of the subdifferential (2.7) of the Lipschitz continuous distance function

dist(x,Ω) := inf{‖x− ω‖ s.t. ω ∈ Ω}

to the set Ω. The following result can be deduced from Thibault [65, Proposition
2.7].

2.6. Proposition. Let Ω be a nonempty subset of a Banach space X. Then

N(x̄; Ω) =
⋃
λ>0

λ∂ dist(x̄,Ω) ∀x̄ ∈ cl Ω.

All the results discussed above are valid in any Banach spaces. Now let us assume
the spaces considered are Asplund [1], i.e., they are Banach spaces on which every
continuous convex function is Fréchet differentiable at a dense set of points. We refer
the reader to the recent books [16, 55] for various properties and characterizations
of such spaces that turn out to be very important for theory and applications. One
of the most useful characterizations is as follows: a Banach space is Asplund if and
only if each of its separable subspaces has a separable dual.

Note that the class of Asplund spaces turns out to be essentially broader than
the class of spaces with Fréchet differentiable renorms. According to Haydon’s
examples (see [16, Chapter 7]), there are Asplund spaces of continuous functions
where every equivalent norm fails to be even Gâteaux differentiable at some non-
zero points. One can find many interesting subclasses and examples of Asplund
spaces in [16, 55].

In this paper we will use the following “fuzzy sum rule” for Fréchet subdiffer-
entials in Asplund spaces, proved by Fabian [18, Theorem 3] with the help of the
Borwein-Preiss smooth variational principle [6] and a separable reduction.

2.7. Proposition. Let X be an Asplund space and let ϕi : X → R̄, i = 1, 2, be
l.s.c. functions one of which is Lipschitz continuous around x̄ ∈ domϕ1 ∩ domϕ2.
Then for any ε ≥ 0, δ > 0, and γ > 0 one has

∂̃ε(ϕ1 + ϕ2)(x̄) ⊂
⋃
{∂̂ϕ1(x1) + ∂̂ϕ2(x2)| xi ∈ Bδ(x̄),

|ϕi(xi)− ϕi(x̄)| ≤ δ, i = 1, 2}+ (ε+ γ)B?.

Applying this result for the case of ϕ1 = ϕ and ϕ2 = 0, we get

2.8. Corollary. Let X be an Asplund space, let ϕ : X → R̄ be a function l.s.c.
around x̄ ∈ domϕ, and let ε ≥ 0, δ > 0, γ > 0. Then

∂̃εϕ(x̄) ⊂
⋃
{∂̂ϕ(x)| x ∈ Bδ(x̄), |ϕ(x)− ϕ(x̄)| ≤ δ}+ (ε+ γ)B?.

Now we use Fabian’s results to prove refined representations of the normal cone
(2.2) as well as the related coderivative and subdifferential constructions (2.4),
(2.7), and (2.8). The representations obtained extend corresponding results of Ioffe
[25] from spaces with Fréchet differentiable renorms to the general case of Asplund
spaces.

2.9. Theorem. Let X and Y be Asplund spaces. Then the following hold:
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(i) For any set Ω ⊂ X and any x̄ ∈ cl Ω one has

N(x̄; Ω) = lim sup
x→x̄

N̂(x; Ω).(2.15)

(ii) For any multifunction Φ : X ⇒ Y and any (x̄, ȳ) ∈ cl gph Φ one has

D?Φ(x̄, ȳ)(ȳ?) = lim sup
(x,y,y?)→(x̄,ȳ,ȳ?)

D̂?Φ(x, y)(y?).

(iii) For any function ϕ : X → R̄ l.s.c. around x̄ ∈ domϕ one has

∂ϕ(x̄) = lim sup
x
ϕ→x̄

∂̂ϕ(x),(2.16)

∂∞ϕ(x̄)= lim sup
x
ϕ→x̄; ε,λ↓0

λ∂̂εϕ(x)= lim sup
x
ϕ→x̄; ε,λ↓0

λ∂̃εϕ(x)= lim sup
x
ϕ→x̄, λ↓0

λ∂̂ϕ(x).(2.17)

Proof. Let us prove (i). By virtue of the normal cone definition (2.2), it suffices
to verify that N(x̄; Ω) is contained in the right-hand side of (2.15). Taking any

x? ∈ N(x̄; Ω), we can find sequences xk → x̄, x?k
w?→ x?, and εk ↓ 0 such that

xk ∈ Ω and x?k ∈ N̂εk(xk; Ω) for k = 1, 2, . . . . Due to (2.13) the latter implies that
x?k ∈ ∂̃εkδ(xk,Ω), where one may consider εk > 0 for all k.

Now let us apply Corollary 2.8 to the indicator function ϕ(x) = δ(x,Ω) at the
point xk for each k. Using this result for ε = δ = γ = εk, we get x̃k ∈ Bεk(xk) ∩ Ω
and x̃?k ∈ ∂̂δ(x̃k,Ω) such that ‖x̃?k − x?k‖ ≤ 2εk for k = 1, 2, . . . . Therefore, x̃k → x̄

and x̃?k
w?→ x? as k →∞. Again employing (2.13), we conclude that x̃?k ∈ N̂(x̃k; Ω),

which implies (2.15).
Assertion (ii) immediately follows from (2.15) with Ω = gph Φ, Definition 2.2,

and (2.5) as ε = 0. In turn, this implies (2.16) for l.s.c. functions by virtue of (2.7)
and (2.10). Note that (2.16) can be obtained directly from (2.9) if we use Corollary
2.8. It remains to prove (2.17) for the singular subdifferentials in Asplund space.
To verify this it suffices to show that

∂∞ϕ(x̄) ⊂ lim sup
x
ϕ→x̄, λ↓0

λ∂̂ϕ(x)(2.18)

since the other inclusions in (2.17) follow directly from the definitions.
Let x? ∈ ∂∞ϕ(x̄), i.e., (x?, 0) ∈ N((x̄, ϕ(x̄)); epi ϕ). It follows from assertion

(i) of this theorem that there exist (xk, rk)
epi ϕ→ (x̄, ϕ(x̄)) and (x?k,−εk) w

?

→ (x?, 0)
as k → ∞ such that (x?k,−εk) ∈ N̂((xk, rk); epi ϕ) for all k = 1, 2, . . . . The
latter implies that εk ≥ 0 for all k. Thus one has two possiblities for the sequence
{(x?k, εk)}: either

(a) there exists a subsequence of {εk} consisting of positive numbers, or
(b) εk = 0 for all k sufficiently large.
In the case (a) we assume, without loss of generality, that εk > 0 for all k, which

implies rk = ϕ(xk) and x?k/εk ∈ ∂̂ϕ(xk) for k = 1, 2, . . . . Hence, letting λk := εk

and x̃?k := x?k/εk, we get λkx̃?k
w?→ x? and λ ↓ 0 as k →∞.

In the case (b), one always has (x?k, 0) ∈ N̂((xk, ϕ(xk)); epi ϕ). Now using
Proposition 2.7 and the technique developed in Ioffe [25, proof of Theorem 4], we
get sequences {x̃k}, {x̃?k}, and {λk} such that

(x̃?k,−1) ∈ N̂((x̂k, ϕ(x̂k)); epi ϕ), x̂k
ϕ→ x̄, λk ↓ 0, and λkx̃k

w?→ x? as k →∞.
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This establishes (2.18) and completes the proof of the theorem.

2.10. Remark. Equalities (2.17) provide convenient representations of the singular
subdifferential (2.8) that is widely used in this paper. They go back to the corre-
sponding Rockafellar theorem in finite dimensions [59]. Note that the intermediate
limits in (2.17) are equal in any Banach space, due to the relationship between (2.10)
and (2.11) mentioned above. Such constructions possess some useful properties in
the general Banach space setting; see [52, 65].

To conclude this section let us consider the ε-subdifferential construction

∂εϕ(x̄) := lim sup
x
ϕ→x̄

∂̃εϕ(x), ε ≥ 0,(2.19)

where ∂̃εϕ(x) is defined in (2.11). Construction (2.19) was recently introduced in
[28] and effectively employed therein to study relationships between concepts of
ε-convexity for extended-real-valued functions and ε-monotonicity for their subdif-
ferential mappings. It follows from Theorem 2.9(iii) that when ε = 0 the set (2.19)
coincides with our basic subdifferential (2.7) for l.s.c. functions in Asplund spaces.
Let us establish the link between (2.7) and (2.19) for any ε ≥ 0 that we observed
after receiving [28].

2.11. Proposition. Let X be an Asplund space and let ϕ : X → R̄ be l.s.c. around
x̄ ∈ domϕ. Then

∂εϕ(x̄) = ∂ϕ(x̄) + εB?(2.20)

for all ε ≥ 0.

Proof. The inclusion “⊃” in (2.20) is trivial. Let us prove the opposite inclusion.
Consider any x? ∈ ∂εϕ(x̄). Due to the definition (2.19) there exist sequences xk

ϕ→ x̄

and x?k
w?→ x? as k → ∞ such that x?k ∈ ∂̃εϕ(xk) for all k = 1, 2, . . . Picking any

sequence δk ↓ 0 as k → ∞ and employing Corollary 2.8 with δ = γ = δk, we find
uk ∈ xk + δkB such that |ϕ(uk)− ϕ(xk)| ≤ δk and

x?k ∈ ∂̂ϕ(uk) + (ε+ δk)B? for all k = 1, 2, . . . .

This allows us to find u?k ∈ ∂̂ϕ(uk) and z?k ∈ (ε+ δk)B? such that

x?k = u?k + z?k for all k = 1, 2, . . . .(2.21)

Now taking into account that X is Asplund and the dual unit ball B? is weak-star
sequentially compact in X?, we may assume that

z?k
w?→ z? as k →∞ with ‖z?‖ ≤ lim inf

k→∞
‖z?k‖ ≤ ε.

Due to (2.21) the latter yields u?k
w?→ u? as k → ∞, where u? ∈ ∂ϕ(x̄) by virtue of

(2.16). Now passing to the limit in (2.21) as k →∞, we arrive at

∂εϕ(x̄) ⊂ ∂ϕ(x̄) + εB?.

This ends the proof of the proposition.
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Therefore, all the calculus results obtained below for our basic subdifferential
construction (2.7) can be tranfered to the ε-subdifferential (2.19).

3. Extremal principle

In this section we study a geometric concept of local extremality for systems of
sets and obtain necessary conditions for such an extremality in terms of Fréchet
normals, ε-normals, and their sequential limits in Asplund spaces. The results
obtained in this way are versions of the extremal principle which is at the heart of
our approach to the generalized differential calculus of the nonconvex constructions
(2.2), (2.7), and (2.8).

3.1. Definition. Let Ω1 and Ω2 be closed sets in a Banach space X and let x̄ ∈
Ω1∩Ω2. Then x̄ is called a locally extremal point of the set system {Ω1,Ω2} if there
are a neighborhood U of x̄ and sequences {aik} ⊂ X, i = 1, 2, such that aik → 0
for i = 1, 2 and

(Ω1 − a1k) ∩ (Ω2 − a2k) ∩ U = ∅ ∀k = 1, 2, . . . .(3.1)

We say that the sets Ω1 and Ω2 generate an extremal system {Ω1,Ω2} if they have
at least one locally extremal point.

This geometric concept of set extremality [34, 35] means that two closed sets
with a common point can be locally pushed apart by small perturbations. It covers
the usual notions of solution to standard as well as nonstandard problems of scalar
and/or vector optimization; see [32, 33, 34, 35, 42, 44]. For example, let x̄ be a
local optimal solution to the problem

minimize ϕ(x) subject to x ∈ Ω,(3.2)

where ϕ is an extended-real-valued function l.s.c. around x̄ and Ω is a closed set
in a Banach space X. Then one can see that (x̄, ϕ(x̄)) is a locally extremal point
of the set system {Ω1,Ω2} in X ×R with Ω1 = epi ϕ and Ω2 = Ω × {ϕ(x̄)}. For
checking this, we take a1k = (0, νk) with νk < 0, a2k = 0 for any k = 1, 2, . . . , and
U = V ×R in (3.1), where V is a neighborhood of the local minimizer x̄ in (3.2).

Another important example of an extremal system is provided by the pair {x̄,Ω}
where x̄ is a boundary point of the closed set Ω ⊂ X. There are also close connections
between extremality and separability of systems of convex and nonconvex sets; see
[44, Section 6].

Now we present necessary conditions for extremal points of closed set systems in
Asplund spaces. These conditions can be viewed as generalized Euler equations in
the abstract geometric setting expressed in terms of Fréchet normals and ε-normals.

3.2. Theorem. Let X be an Asplund space, let Ω1 and Ω2 be closed sets in X, and
let x̄ ∈ Ω1 ∩ Ω2 be a locally extremal point of the system {Ω1,Ω2}. Then one has
the following two equivalent conditions:

(i) For any ε > 0 there exist xiε ∈ Ωi ∩ Bε(x̄) and x?iε ∈ N̂ε(xiε; Ωi), i = 1, 2,
such that

‖x?1ε‖+ ‖x?2ε‖ = 1 and x?1ε + x?2ε = 0.(3.3)

(ii) For any ε > 0 there exist xiε ∈ Ωi ∩ Bε(x̄) and x?iε ∈ N̂(xiε; Ωi) + εB?, i =
1, 2, such that relationships (3.3) hold.
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Proof. Developing a classical line in optimization theory, we derive necessary condi-
tions for locally extremal points of set systems from a corresponding open mapping
principle. Indeed, one can conclude directly from the definitions that x̄ is not a
locally extremal point of the system {Ω1,Ω2} if the mapping Φ : Ω1 × Ω2 → X
defined by

Φ(z) := x2 − x1 for z = (x1, x2) ∈ Ω := Ω1 × Ω2(3.4)

possesses the following covering property: there exist a number a > 0 and a neigh-
borhood V of z̄ := (x̄, x̄) such that

Bar(Φ(z)) ⊂ Φ(Br(z) ∩ Ω) for any (z, r) with Br(z) ⊂ V.
Therefore, any sufficient condition for the covering of mapping (3.4) around z̄ gen-
erates a necessary condition for the locally extremal point x̄ of the system {Ω1,Ω2}.

In [50], we proved several necessary and sufficient conditions for the covering of
multifunctions between Asplund spaces. The following one is more convenient to
be employed in the present setting: Φ enjoys the covering property around z̄ if and
only if there exists ε > 0 such that

ker D̂?
εΦ(z) ⊂ B? ∀x ∈ Bε(z̄) ∩ Ω.(3.5)

Using criterion (3.5) for the case of mapping (3.4) and taking into account the
previous discussions, we can conclude that if x̄ is an extremal point of {Ω1,Ω2},
then for any ε > 0 there exist x1ε ∈ Ω1 ∩ Bε(x̄), x2ε ∈ Ω2 ∩ Bε(x̄), and x?ε ∈
ker D̂?

εΦ(x1ε, x2ε) with ‖x?ε‖ > 1. By virtue of (2.5), (2.1), and (3.4) one has

lim sup
(x1,x2)

Ω1×Ω2→ (x1ε,x2ε)

−〈x?ε, (x2 − x1)− (x2ε − x1ε)〉
‖(x1, x2)− (x1ε, x2ε)‖

≤ ε.(3.6)

Now denoting x?1ε := x?ε/(2‖x?ε‖) and x?2ε := −x?ε/(2‖x?ε‖), we get (3.3) and the
inclusions x?iε ∈ N̂ε(xiε; Ωi), i = 1, 2, which follow from (3.6). This implies the first
necessary extremality condition of the theorem.

Conclusion (ii) of the theorem follows from (i) by virtue of Corollary 2.8 applied
to the indicator functions δ(·,Ω1) and δ(·,Ω2). The opposite implication (ii)=⇒(i)
holds for any Banach space due to the obvious inclusion

N̂(x; Ω) + εB? ⊂ N̂ε(x; Ω) ∀ε ≥ 0

that is valid in the general case. This ends the proof of the theorem.

3.3. Remarks. (a) Condition (i) of Theorem 3.2 was first proved by Kruger and
Mordukhovich [34, 35] by using Ekeland’s variational principle [17] for spaces with
Fréchet differentiable renorms; see also [32, 44]. In [25], Ioffe proved condition
(ii) in the Fréchet differentiable setting by using the smooth variational principle of
Borwein and Preiss [6] instead of Ekeland’s. Our result shows that both extremality
conditions (i) and (ii) are valid and equivalent in any Asplund space.

(b) Another proof of Theorem 3.2 can be found in Mordukhovich-Shao [51].
Moreover, in [51] we show that a Banach spaceX is Asplund if and only if conditions
(i) and (ii) are equivalent and hold for any extremal set system in X.

The extremal point characteristics obtained in Theorem 3.2 lead to necessary
optimality conditions for general problems of nonsmooth optimization in Asplund
spaces; this topic is beyond the scope of the present paper. On the other hand, em-
ploying those characteristics, one can easily get some useful consequences related to
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the geometry of Banach spaces. The following result may be viewed as a nonconvex
generalization of the celebrated Bishop-Phelps density theorem in terms of Fréchet
normals in Asplund spaces; cf. [5, 8, 55].

3.4. Corollary. Let Ω ⊂ X be a nonempty closed subset of an Asplund space X.
Then the set of points

x ∈ Ω with N̂(x; Ω) 6= {0}(3.7)

is dense in the boundary of Ω.

Proof. Let x̄ be a boundary point of the set Ω. Then it is a locally extremal point
of the system {Ω1,Ω2}, where Ω1 := Ω and Ω2 := {x̄}. Let us apply to this case
the necessary extremality condition (ii) of Theorem 3.2 with 0 < ε ≤ 1/2. Using
this result, we find xε ∈ Ω and x?1ε, x

?
2ε ∈ X? such that

xε ∈ Bε(x̄), x?1ε ∈ N̂(xε; Ω) + εB?, ‖x?1ε‖+ ‖x?2ε‖ = 1, x?1ε + x?2ε = 0.

This implies that ‖x?1ε‖ = 1/2 > ε and the cone N̂(·; Ω) is non-trivial at xε which
is a boundary point of Ω within ε of x̄. Therefore, the set (3.7) is norm dense in
the boundary of Ω.

Note that if Ω is convex, then the Fréchet normal cone N̂(·; Ω) is reduced to the
normal cone of convex analysis, and (3.7) coincides with the set of support points
of Ω as in the Bishop-Phelps theorem [55, Theorem 3.18].

Now let us consider circumstances when one can pass to the limit in the results
of Theorem 3.2 as ε ↓ 0 and obtain in this way necessary conditions for extremal
points of set systems {Ω1,Ω2} in terms of the normal cone (2.2). We can always
do it for any closed sets in finite dimensions and justify the extremal principle of
the form

∃x? 6= 0 such that x? ∈ N(x̄; Ω1) ∩ (−N(x̄; Ω2));(3.8)

see Mordukhovich [42, 44, 49] for alternative proofs and applications of this result
in finite dimensional nonsmooth analysis and optimization. In infinite dimensions,
one should impose additional assumptions on the sets in question to ensure the
nontriviality of the sequential weak-star limit in the extremality conditions of The-
orem 3.2. Some previous conditions in this direction can be found in [32, 34, 44]
for extremal systems in Fréchet differentiable spaces. In this paper we are able to
establish (3.8) and related calculus results in the general Asplund space framework
under the compactness condition as follows.

3.5. Definition. A closed set Ω ⊂ X is said to be normally compact around x̄ ∈ Ω
if there exist positive numbers γ, δ and a compact subset S of X such that

N̂(x; Ω) ⊂ Kγ(S) := {x? ∈ X?| γ‖x?‖ ≤ max
s∈S
|〈x?, s〉|} ∀x ∈ Bδ(x̄) ∩ Ω.(3.9)

Condition (3.9) has been used by Loewen [38] to prove that the graph of the
normal cone (2.2) is closed in the norm×weak topology of X × X? for the case
of reflexive spaces X. We observe that in the general Asplund space setting this
condition does not ensure such a robustness property, but it turns out to be crucial
to support limiting procedures developed below; see also [53] for more discussions.

In [38, Proposition 2.7], Loewen proves for the case of arbitrary Banach spaces
that Ω satisfies the normal compactness condition (3.9) if it happens to be “com-
pactly epi-Lipschitzian” around x̄ in the sense of Borwein and Strojwas [7]. The
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latter means that there exist a neighborhood U of x̄, a neighborhood V of the origin
in X, a compact set S ⊂ X, and a constant r > 0 such that

Ω ∩ U + λV ⊂ Ω + λS ∀λ ∈ (0, r).(3.10)

In particular, (3.9) holds for any set Ω epi-Lipschitzian around x̄ in the sense of
Rockafellar [58] that corresponds to (3.10) when S is a singleton. Note that the
epi-Lipschitzian property does not necessarily hold for arbitrary closed sets in finite
dimensions. In fact, it is equivalent to the nonempty interiorty of Clarke’s tangent
cone to Ω at x̄ that is reduced to int Ω 6= ∅ if Ω is convex; see [7, 58]. On the
contrary, the compactly epi-Lipschitzian property is fulfilled if Ω is “epi-Lipschitz-
like” around x̄ in the sense of Borwein [3]. The latter always holds if either Ω
is epi-Lipschitzian around x̄ or X is finite dimensional; see [3] for more details.
Thus the normal compactness property in Definition 3.5 turns out to be a natural
generalization of the epi-Lipschitzian behavior in Banach spaces and automatically
holds for any closed set in finite dimensions.

3.6. Theorem. Let X be an Asplund space, let Ω1 and Ω2 be closed subsets of X,
and let x̄ ∈ Ω1 ∩ Ω2 be a locally extremal point of the system {Ω1,Ω2}. If one of
the sets Ω1 and Ω2 is normally compact around x̄, then there exists x? ∈ X? such
that the extremal principle (3.8) holds.

Proof. Let us use the extremality conditions of Theorem 3.2. Picking an arbitrary
sequence εk ↓ 0 as k →∞, we find sequences {xk} ⊂ X and {x?k} ⊂ X? such that

x?ik ∈ N̂(xik; Ωi), ‖xik − x̄‖ ≤ εk for i = 1, 2;(3.11)

1/2− εk ≤ ‖x?ik‖ ≤ 1/2 + εk, i = 1, 2, and ‖x?1k + x?2k‖ ≤ εk.(3.12)

Using boundedness of {x?ik} and taking into account that the unit ball B? ⊂ X?

is weak-star sequentially compact for any Asplund space X, we may assume that
x?ik

w?→ x?i as k →∞ for i = 1, 2. Thus x?i ∈ N(x̄; Ωi), i = 1, 2, and x?1 +x?2 = 0 due
to (3.12).

Let us denote x? := x?1 = −x?2. To prove (3.8) it remains to show that x? 6= 0 if
one of the sets Ωi (say Ω1) is normally compact around x̄. Assume that it is not

true, i.e., x?1k
w?→ x? = 0 as k → ∞. Using the compactness of the set S ⊂ X in

(3.9), we conclude that 〈x?1k, s〉 → 0 uniformly in s ∈ S. By virtue of condition
(3.9), this implies x?1k → 0 as k →∞ in the norm topology of X?, which contradicts
the first formula in (3.12) and completes the proof of the theorem.

3.7. Corollary. Let X be an Asplund space and let Ω ⊂ X be normally compact
around x̄ ∈ Ω. Then x̄ is a boundary point of Ω if and only if the normal cone (2.2)
is nontrivial, i.e.

N(x̄; Ω) 6= {0}.(3.13)

Proof. If x̄ is an interior point of Ω, then N(x̄; Ω) = {0} by virtue of Definition 2.1.
Let x̄ be a boundary point of Ω, i.e., it is a locally extremal point of the system
{x̄,Ω}. Using Theorem 3.6, we arrive at condition (3.13).

3.8. Remarks. (a) If both Ω1 and Ω2 are convex, then (3.8) is equivalent to the
classical separation property:

∃x? 6= 0 with 〈x?, ω1〉 ≤ 〈x?, ω2〉 ∀ω1 ∈ Ω1, ω2 ∈ Ω2.
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It is easy to show that the separation property implies the local extremality of any
point x̄ ∈ Ω1 ∩ Ω2 in the general nonconvex case; cf. [44, Proposition 6.1]. This
means that for convex sets the separation and extremality properties are equivalent.
In particular, any closed convex sets Ω1 and Ω2 with Ω1∩Ω2 6= ∅ and (int Ω1)∩Ω2 =
∅ provide an extremal system. Therefore, one may view Theorem 3.6 as a proper
generalization of the classical separation (Hahn-Banach) theorem for nonconvex
sets in Asplund spaces. Respectively, Corollary 3.7 turns out to be a nonconvex
analogue of the supporting hyperplane result.

(b) As it has been mentioned above, the epi-Lipschitzian property of a convex set
is reduced to the nonemptiness of its interiority. Thus the normal compactness con-
dition (3.9) is a substantial development of this property in the general nonconvex
setting. From this viewpoint the results of Theorem 3.2 may be treated as non-
convex generalizations of the classical separation theorem with no interiority-like
assumptions.

(c) The results of Theorems 3.2 and 3.6 can be extended to an extremal system
of sets {Ω1, . . . ,Ωn} for any finite number n ≥ 2, taking into account that Asplund
spaces are invariant with respect to Cartesian product. This can be done either
directly or using an inductive reduction to the case of two sets; cf. [32, 44, 51].

In conclusion of this section let us present a useful consequence of Corollary 3.7
that ensures nonemptiness of the subdifferential (2.7) for any locally Lipschitzian
function defined on an Asplund space.

3.9. Corollary. Let X be an Asplund space and let ϕ : X → R̄ be Lipschitz con-
tinuous around x̄. Then ∂ϕ(x̄) 6= ∅.
Proof. Consider the set Ω := epi ϕ, which is closed and epi-Lipschitzian around
(x̄, ϕ(x̄)) due to the Lipschitz continuity of ϕ around x̄. Obviously, (x̄, ϕ(x̄)) is a
boundary point of epi ϕ. Employing Corollary 3.7, one has N((x̄, ϕ(x̄)); epi ϕ) 6=
{0}. Now using Proposition 2.5, we conclude that the subdifferential (2.7) is
nonempty.

3.10. Remark. One can easily see that the set ∂ϕ(x̄) is bounded in the norm topol-
ogy of X? if ϕ is Lipschitz continuous around x̄ in any Banach space X. However,
this set may not be weak-star closed even for Lipschitz functions defined on spaces
with Fréchet differentiable renorms; see Section 9 for more details.

4. Sum rules for subdifferentials

In this section we obtain fundamental calculus results for the nonconvex sequen-
tial constructions in Section 2 related to representations of the subdifferentials for
sums of extended-real-valued functions and the normal cone to intersections of sets
in Asplund spaces. The main tool in proving these results is the extremal principle
developed in the previous section.

First we consider normal compactness assumptions on functions related to the
corresponding assumptions on sets in Section 3. We say that a l.s.c. function
ϕ : X → R̄ is normally compact around x̄ ∈ domϕ if its epigraph Ω := epi ϕ is
normally compact around (x̄, ϕ(x̄)) in the sense of Definition 3.5.

It follows from Loewen [38] that ϕ is normally compact around x̄ if it is “com-
pactly epi-Lipschitz” around this point. This corresponds to the compactly epi-
Lipschitzian property of the set Ω := epi ϕ around (x̄, ϕ(x̄)); see Borwein [3].
A special case of this setting when the epigraph of ϕ is epi-Lipschitzian around
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(x̄, ϕ(x̄)) corresponds to the directionally Lipschitz property of ϕ around x̄ in the
sense of Rockafellar [58]. The latter always holds when ϕ happens to be Lipschitz
continuous around x̄. Moreover, the class of compactly epi-Lipschitz functions
covers “epi-Lipschitz-like” functions on Banach spaces that, in turn, include all
l.s.c. functions defined on finite dimensional spaces; see [3]. Therefore, the normal
compactness property under consideration holds for every l.s.c. function in finite
dimensions as well as for locally Lipschitz functions and their generalizations in
arbitrary Banach spaces.

The next theorem contains general sum rules for the sequential subdifferential
constructions (2.7) and (2.8).

4.1. Theorem. Let X be an Asplund space, let ϕi : X → R̄, i = 1, 2, . . . , n, be
l.s.c. around x̄, and let all but one of these functions be normally compact around
x̄. Suppose also that the following qualification condition holds :

[x?i ∈ ∂∞ϕi(x̄), i = 1, . . . , n| x?1 + · · ·+ x?n = 0] =⇒ x?1 = · · · = x?n = 0.(4.1)

Then one has the inclusions

∂(ϕ1 + · · ·+ ϕn)(x̄) ⊂ ∂ϕ1(x̄) + · · ·+ ∂ϕn(x̄),(4.2)

∂∞(ϕ1 + · · ·+ ϕn)(x̄) ⊂ ∂∞ϕ1(x̄) + · · ·+ ∂∞ϕn(x̄).(4.3)

Moreover, if all ϕi are subdifferentially regular at x̄, then the sum ϕ1 + · · ·+ ϕn is
also subdifferentially regular at this point, and equality holds in (4.2).

Proof. First let us consider the case of two functions ϕ1, ϕ2 and prove inclusion
(4.2). For definiteness we assume that ϕ1 is normally compact around x̄.

Let x? ∈ ∂(ϕ1 + ϕ2)(x̄). Due to representation (2.16) one can find sequences

xk → x̄ and x?k
w?→ x̄? such that ϕi(xk)→ ϕi(x̄), i = 1, 2, and x?k ∈ ∂̂(ϕ1 +ϕ2)(xk),

k = 1, 2, . . . . Picking an arbitrary sequence εk ↓ 0 as k → ∞ and using (2.11) at
xk for ε = 0, we find a neighborhood Uk of xk where

(ϕ1 + ϕ2)(x)− (ϕ1 + ϕ2)(xk)− 〈x?k, x− xk〉+ εk‖x− xk‖ ≥ 0 ∀x ∈ Uk.(4.4)

Without loss of generality, we assume that ϕ1 and ϕ2 are l.s.c. on X. Therefore,
the sets

Ω1k := {(x, µ) ∈ X ×R | ϕ1(x)− ϕ1(xk) ≤ µ}(4.5)

and

Ω2k := {(x, µ) ∈ X ×R| ϕ2(x)− ϕ2(xk)− 〈x?k, x− xk〉+ εk‖x− xk‖ ≤ −µ}
(4.6)

are closed. By virtue of (4.4) and the construction of sets (4.5) and (4.6), we
observe that (xk, 0) is a locally extremal point of the system {Ω1k,Ω2k} for each
k = 1, 2, . . . Indeed, one can easily check that

(xk, 0) ∈ Ω1k ∩Ω2k and Ω1k ∩ [Ω2k − (0, ν)] ∩ [Uk ×R] = ∅ ∀ν > 0, k = 1, 2, . . . .

Now we employ the extremal principle in Theorem 3.2. According to assertion (ii)
of this theorem there exist (xik, µik) ∈ (epi ϕi) ∩ Bεk(xk, ϕi(xk)), i = 1, 2, as well
as (x̃?k, αk) ∈ X? ×R and (ỹ?k, βk) ∈ X? ×R such that

1/2− εk ≤ ‖x̃?k‖+ |αk| ≤ 1/2 + εk, 1/2− εk ≤ ‖ỹ?k‖+ |βk| ≤ 1/2 + εk,(4.7)

(x̃?k, αk) ∈ N̂((x1k, µ1k − ϕ1(xk)); Ω1k),(4.8)
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(ỹ?k, βk) ∈ N̂((x2k,−µ2k + ϕ2(xk) + 〈x?k, x2k − xk〉 − εk‖x2k − xk‖); Ω2k),(4.9)

‖(x̃?k, αk) + (ỹ?k, βk)‖ ≤ εk.(4.10)

Thus one has (xik, µik)
epi ϕi→ (x̄, ϕi(x̄)) as k → ∞ for i = 1, 2. Taking into ac-

count that the space X is Asplund and the sequences (x̃?k, αk)} and {(ỹ?k, βk)} are
bounded, we may suppose that

(x̃?k, αk) w
?

→ (x̃?, α) and (ỹ?k, βk) w
?

→ (ỹ?, β) as k →∞.(4.11)

From (4.5), (4.8), (4.11), and the construction of the normal cone (2.2) we get

(x̃?, α) ∈ N((x̄, ϕ1(x̄)); epi ϕ1) with α ≤ 0.(4.12)

On the other hand, using (4.6), (4.9) as well as the definition of Fréchet normals,
one obtains

lim sup
(x,µ)

epi ϕ2→ (x2k,µ2k)

〈ỹ?k, x− x2k〉 − βk(µ− µ2k − 〈x?k, x− x2k〉+ εk‖x− x2k‖)
‖(x− x2k‖+ |µ− µ2k|+ |〈x?k, x− x2k〉|+ εk‖x− x2k‖

≤ 0.

The latter implies that

(βkx?k + ỹ?k,−βk) ∈ N̂ε̃k((x2k, µ2k); epi ϕ2)(4.13)

with ε̃k := εk(1 + ‖x?k‖ + εk + |βk|) for each k = 1, 2 . . . Passing to the limit in
(4.13) as k →∞, one has (βx? + ỹ?,−β) ∈ N((x̄, ϕ2(x̄)); epi ϕ2), where ỹ? = −x̃?
and β = −α by virtue of (4.10). Therefore, we obtain the inclusion

(−αx? − x̃?, α) ∈ N((x̄, ϕ2(x̄)); epi ϕ2).(4.14)

Next let us show that α 6= 0. Indeed, if α = 0, then (4.12) and (4.14) yield

(x̃?, 0) ∈ N((x̄, ϕ1(x̄)); epi ϕ1) and (−x̃?, 0) ∈ N((x̄, ϕ2(x̄)); epi ϕ2),

that implies x̃? = 0 by virtue of definition (2.8) and the qualification condition (4.1)

for n = 2. Hence, (x̃?k, αk) w?→ (0, 0) as k → ∞ due to (4.11). Now remembering
that (x̃?k, αk) ∈ N̂((x1k, µ1k); epi ϕ1) and ϕ1 is normally compact around x̄, we can
conclude that (x̃?k, αk) → (0, 0) in the norm topology of X? × R as k → ∞; cf.
the proof of Theorem 3.6. But the latter contradicts (4.7). Therefore, α 6= 0 and
inclusions (4.12) and (4.14) are reduced to, respectively,

(x̃?/|α|,−1) ∈ N((x̄, ϕ1(x̄)); epi ϕ1),

(x? − x̃?/|α|,−1) ∈ N((x̄, ϕ2(x̄)); epi ϕ2).
(4.15)

Denoting x?1 := x̃?/|α|, x?2 := x? − x?1 and using (2.7), we get from (4.15) the
inclusion x? ∈ ∂ϕ1(x̄) + ∂ϕ2(x̄), which proves (4.2) for the case of two functions.

To prove inclusion (4.3) for singular subdifferentials when n = 2, we use the
arguments above and Theorem 2.9(iii). When n > 2, we prove inclusions (4.2) and
(4.3) by induction, where the qualification assumption (4.1) at the current step is
justified by using (4.3) at the previous step.

It remains to prove the equality and regularity statement of the theorem. Let
us observe that one always has

∂̂(ϕ1 + · · ·+ ϕn)(x̄) ⊃ ∂̂ϕ1(x̄) + · · ·+ ∂̂ϕn(x̄)(4.16)

for Fréchet subdifferentials of any functions ϕi. This easily follows from represen-
tation (2.11) as ε = 0. If all ϕi are subdifferentially regular at x̄, then (4.2) and
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(4.16) ensure that the sum ϕ1 + · · · + ϕn is also subdifferentially regular at this
point and equality holds in (4.2). This ends the proof of the theorem.

4.2. Remark. If all but one of the functions ϕi are continuous around x̄, then the
conclusions of Theorem 4.1 hold true even when the remaining function (say ϕn)
is not l.s.c. around x̄. This follows from the definitions and the proof given above,
where ϕn can be replaced by its lower semicontinuous envelope; cf. the proof of
Theorem 4.1 in [44].

4.3. Corollary. Let X be an Asplund space and let all but one of the functions ϕi
be Lipschitz continuous around x̄. Then:

(i) One has inclusion (4.2) where equality holds if all but one of the ϕi are strictly
differentiable at x̄.

(ii) One always has equality in (4.3).

Proof. Due to Proposition 2.5 we have ∂∞ϕi(x̄) = {0} if ϕi is Lipschitz continuous
around x̄. This implies the qualification condition (4.1) and thus inclusion (4.2),
taking into account Remark 4.2. To prove equality in (4.2) we consider for simplicity
the case of two functions where ϕ2 is strictly differentiable at x̄. Then employing
inclusion (4.2) for the sum ϕ1 = (ϕ1 + ϕ2) + (−ϕ2) with ∂(−ϕ2)(x̄) = {−ϕ′2(x̄)},
we obtain the inclusion opposite to (4.2). To prove equality in (4.3) in the Lipschitz
case we use the same procedure, taking into account Proposition 2.5.

4.4. Remarks. (a) The equalities in Corollary 4.3 can be proved in any Banach
space without using Theorem 4.1. This is directly based on the definitions and
representation (2.12) with ε > 0. We refer the reader to [52] for details and further
considerations.

(b) It is well known that the condition ∂∞ϕ(x̄) = {0}, which is crucial in Corol-
lary 4.3, is not only sufficient but also necessary for the local Lipschitz continuity of
l.s.c. functions defined on finite dimensional spaces; cf. [11, 44, 59, 63]. This result
is no longer true in infinite dimensions unless additional conditions are imposed.
A proper setting for the fulfilment of such a criterion of Lipschitz continuity is the
normal compactness condition considered in Theorem 4.1, that covers the finite
dimensional case. It can be derived from Theorem 8.8 stated below; cf. Loewen
[40] for the case of spaces with Fréchet differentiable norms. An alternative proof
of this criterion in Asplund spaces can be found in [53].

One can formulate other consequences of Theorem 4.1 that ensure the fulfilment
of the normal compactness condition for all but one of the functions ϕi (in particu-
lar, under directionally Lipschitz, Lipschitz-like, or compactly Lipschitz properties;
see the discussions above). Let us present an important corollary for the normal
cones to intersections of sets that is beyond the scope of locally Lipschitzian func-
tions in Corollary 4.3.

4.5. Corollary. Let X be an Asplund space and let Ω1, . . . ,Ωn be closed sets in
X such that all but one of them are normally compact around x̄ ∈ Ω1 ∩ . . . ∩ Ωn.
Suppose that

[x?i ∈ N(x̄; Ωi), i = 1, . . . , n| x?1 + · · ·+ x?n = 0] =⇒ x?1 = · · · = x?n = 0.(4.17)

Than one has the inclusion

N(x̄; Ω1 ∩ . . . ∩Ωn) ⊂ N(x̄; Ω1) + · · ·+N(x̄; Ωn)(4.18)

where equality holds when all Ωi are regular at x̄.
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Proof. Taking ϕi := δ(·,Ωi) in Theorem 4.1 and using representations (2.14), we
reduce the qualification condition (4.1) to (4.17) and both inclusions (4.2) and (4.3)
to (4.18). To finish the proof we observe that the subdifferential regularity of δ(·,Ω)
is equivalent to the regularity of Ω at the same point.

4.6. Remark. In finite dimensions the results of Theorem 4.1 and Corollary 4.5 for
extended-real-valued l.s.c. functions and closed sets were first obtained in Mor-
dukhovich [43, 44]; we also refer the reader to [11, 22, 39, 45, 63] for various proofs,
special cases, and discussions. In [31], Kruger proved the infinite dimensional coun-
terparts of those results for directionally Lipschitzian functions and epi-Lipschitzian
sets in spaces with Fréchet differentiable renorms under more restrictive qualifica-
tion conditions. The results presented above unify and extend both finite and
infinite dimensional predecessors to the Asplund space setting under the most gen-
eral qualification and compactness conditions. Note that Ioffe [24] established ana-
logues of the results in Theorem 4.1 for his G-subdifferentials of directionally Lips-
chitz functions in Banach spaces which are not reduced to the results proved above
even for the case of locally Lipschitz functions defined on spaces with Fréchet dif-
ferentiable renorms; see Section 9. Recently Jourani and Thibault [30] obtained
generalizations of the latter results for G-subdifferentials to the case of compactly
epi-Lipschitz functions.

5. Scalarization formula

In Section 2 we defined the coderivative (2.4) of a multifunction Φ : X ⇒ Y
using the normal cone to its graph. This concept turns out to be important for
many applications, some of which are considered in this paper; see the next section.
Actually our basic subdifferential construction (2.7) is defined geometrically as a
special case of the coderivative, although it admits equivalent analytical represen-
tations. In some situations (in particular, for chain rules; see below) it is more
convenient to find reverse representations of the coderivatives for multi-valued or
single-valued mappings in terms of the subdifferentials for related scalarizations.
Such a representation was obtained for single-valued locally Lipschitzian mappings
Φ : X → Y between finite dimensional spaces in the form

D?Φ(x̄)(y?) = ∂〈y?,Φ〉(x̄) for all y? ∈ Y ?(5.1)

where 〈y?,Φ〉(x) := 〈y?,Φ(x)〉 is the Lagrange scalarization of Φ; cf. the proofs in
Ioffe [22, Proposition 8] and Mordukhovich [44, Theorem 3.3] with further discus-
sions and references. The question arises about possible extensions of the scalariza-
tion formula (5.1) to infinite dimensional spaces. Now we provide such an extension
for the following subclass of locally Lipschitzian mappings in infinite dimensions.

5.1. Definition. Let Φ : X → Y be a single-valued mapping between Banach
spaces X and Y that is Lipschitz continuous around x̄. We say that Φ is strictly
Lipschitzian at x̄ if there exists a neighborhood V of the origin in X such that the
sequence

Φ(xk + tkv) − Φ(xk)
tk

, k = 1, 2, . . . ,

has a convergent subsequence in the norm topology of Y for each v ∈ V, xk → x̄,
and tk ↓ 0 as k →∞.
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Obviously, any mapping Φ : X → Y that is Lipschitz continuous around x̄ is
strictly Lipschitzian at this point if the space Y is finite dimensional. Moreover, one
can check directly from the definitions that any locally Lipschitzian mapping acting
between Banach spaces is strictly Lipschitzian at x̄ if it has a norm-compact-valued
“strict prederivative” in the sense of Ioffe [20]. Thus the class of strictly Lipschitzian
mappings covers all strictly differentiable mappings and all compositions H ◦ F of
a Lipschitz continuous mapping F with a strictly differentiable mapping H whose
derivative is a compact operator. The latter subclass includes Fredholm integral
operators with Lipschitz continuous kernels, which are particularly important for
applications in optimal control; see [19].

Also one can easily verify that Φ is strictly Lipschitzian at x̄ in the general Banach
space setting if it is “strongly compactly Lipschitzian” at this point in the sense
intensively studied by Jourani and Thibault; see, e.g., [30]. After receiving this
paper, Thibault proved (personal communication) the equivalence of our Definition
5.1 to a variant [29] of his original concept of “compactly Lipschitzian” mappings;
cf. [64].

5.2. Theorem. Let X and Y be Banach spaces and let Φ : X → Y be a single-
valued mapping continuous around x̄. Then one always has

∂〈y?,Φ〉(x̄) ⊂ D?Φ(x̄)(y?) ∀y? ∈ Y ?.(5.2)

If, in addition, X is an Asplund space and Φ is strictly Lipschitzian at x̄, then one
has the scalarization formula (5.1), where D?Φ(x̄)(y?) 6= ∅ for any y? ∈ Y ?.

Proof. First let us prove inclusion (5.2) under the general assumptions. Taking any
x? ∈ ∂〈y?,Φ〉(x̄) and using representation (2.12), we find sequences {xk}, {x?k}, and

{εk} such that xk → x̄, x?k
w?→ x?, and εk ↓ 0 as k → ∞ with x?k ∈ ∂̃εk〈y?,Φ〉(xk)

for k = 1, 2, . . . . Due to (2.11) there is a sequence δk ↓ 0 as k →∞ with

〈y?,Φ〉(x)− 〈y?,Φ〉(xk)− 〈x?k, x− xk〉 ≥ −2εk‖x− xk‖
∀x ∈ Bδk(xk), k = 1, 2, . . . .

The latter easily implies

lim sup
x→xk

〈x?k, x− xk〉 − 〈y?,Φ(x)− Φ(xk)〉
‖(x− xk,Φ(x)− Φ(xk))‖ ≤ 2εk,

that means (x?k,−y?〉 ∈ N̂2εk((xk,Φ(xk)); gph Φ) for each k = 1, 2, . . . . Now using
(2.2) and (2.4), we conclude that x? ∈ D?Φ(x̄)(y?). This proves inclusion (5.2) in
the general case under consideration.

Now let us prove that the opposite inclusion holds if X is an Asplund space and
Φ is strictly Lipschitzian at x̄. Picking any x? ∈ D?Φ(x̄)(y?) and using definitions

(2.4) and (2.2), we find sequences x?k
w?→ x?, y?k

w?→ y?, xk → x̄, and εk ↓ 0 as k →∞
with (x?k,−y?k) ∈ N̂εk((xk,Φ(xk)); gph Φ) for k = 1, 2, . . . . By virtue of (2.1) there
exists a sequence δk ↓ 0 as k →∞ such that

〈x?k, x− xk〉 − 〈y?k,Φ(x)− Φ(xk)〉 ≤ 2εk(‖x− xk‖+ ‖Φ(x)− Φ(xk)‖)(5.3)

for any x ∈ Bδk(xk) with ‖Φ(x)−Φ(xk)‖ ≤ δk, k = 1, 2, . . . . Taking into account
that Φ is locally Lipschitzian around x̄ and xk → x̄ as k → ∞, we consider a
uniform Lipschitz modulus l for Φ on the sets Bδk(xk) for all k = 1, 2, . . . . Then
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(5.3) provides

〈x?k, x− xk〉 − 〈y?k,Φ(x)〉+ 〈y?k,Φ(xk)〉 ≤ 2εk(1 + l)‖x− xk‖
∀x ∈ Bδk(xk), k = 1, 2, . . . .

The latter implies that for each fixed k = 1, 2, . . . one has the limiting expression

lim inf
x→xk

〈y?k,Φ〉(x)− 〈y?k,Φ〉(xk)− 〈x?k, x− xk〉
‖x− xk‖

≥ νk,

where νk := 2(1 + l)εk → 0 as k →∞. Remembering (2.11), we obtain

x?k ∈ ∂̃νk〈y?k,Φ〉(xk) = ∂̃νk [〈y?,Φ〉+ 〈y?k − y?,Φ〉](xk).(5.4)

Now we consider the sum of two functions in (5.4) and employ Proposition 2.7
with ε = δ = γ := νk for each k = 1, 2, . . . . In this way one finds sequences
{uk}, {vk}, {z?k}, and {v?k} such that ‖uk − xk‖ ≤ νk, ‖vk − xk‖ ≤ νk, ‖z?k‖ ≤ νk,
and x?k = x̃?k + z?k with

x̃?k = u?k + v?k, u
?
k ∈ ∂̂〈y?,Φ〉(uk), and v?k ∈ ∂̂〈y?k − y?,Φ〉(vk) for k = 1, 2 . . . .

(5.5)

Taking into account the boundedness of {y?k} in Y ? and the Lipschitz continuity
of Φ around x̄, we conclude that the sequences {u?k} and {v?k} are also bounded in

Y ?. Thus we can suppose that u?k
w?→ u? and v?k

w?→ v? as k → ∞. Now passing to
the limit in (5.5), one gets u? ∈ ∂〈y?,Φ〉(x̄) and x? = u? + v?.

We claim that v? = 0. Indeed, it follows from (5.5) and (2.11) as ε = 0 that for
any γk ↓ 0 there exists δk ↓ 0 as k →∞ such that

〈v?k, x− vk〉 − 〈y?k − y?,Φ(x)− Φ(vk)〉 ≤ γk‖x− vk‖(5.6)

for all x ∈ Bδk(vk), k = 1, 2, . . . . Let us consider a neighborhood V of the origin in
X that appeared in Definition 5.1. Picking any v ∈ V , one can choose a sequence
tk ↓ 0 as k →∞ such that vk + tkv ∈ Bδk(vk) for all k. Then (5.6) implies

〈v?k, v〉 − 〈y?k − y?,
Φ(vk + tkv)− Φ(vk)

tk
〉 ≤ γk‖v‖.(5.7)

Since Φ is strictly Lipschitzian at x̄, we may assume that the sequence
{[Φ(vk + tkv) − Φ(xk)]/tk} converges in the norm topology of Y as k → ∞. Now
taking the limit in (5.7) as k → ∞, one has 〈v?, v〉 ≤ 0 for any v ∈ V . This
obviously implies v? = 0. Therefore, we get x? ∈ ∂〈y?,Φ〉(x̄) and prove the op-
posite inclusion in (5.2), i.e., the scalarization formula (5.1). The nonemptiness of
D?Φ(x̄)(y?) for any y? ∈ Y ? follows from (5.1) and Corollary 3.9. This ends the
proof of the theorem.

5.3. Remark. In [24, Theorem 7.8], Ioffe established an analogue of Theorem 5.2 for
the so-called “G-nuclei”, that may be bigger than our sequential constructions even
for locally Lipschitzian mappings Φ : X → Y between spaces with Fréchet differ-
entiable renorms; see Section 9. The corresponding G-analogue of the scalarization
formula (5.1) was proved in [24] for the case of locally Lipschitzian mappings Φ that
have strict prederivatives at x̄ with norm compact values and, therefore, belong to
the class of strictly Lipschitzian mappings in Definition 5.1.
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6. Subdifferentials of marginal functions and chain rules

In this section we study a broad class of marginal functions of the form

m(x) := inf{ϕ(x, y)| y ∈ Φ(x)},(6.1)

where ϕ : X × Y → R̄ is an extended-real-valued function and Φ : X ⇒ Y is a
multifunction between Banach spaces. It is well known that marginal functions
play a substantial role in nonsmooth analysis and optimization. In particular,
they include value functions in various optimization problems, that characterize
the dependence of the optimal value in the problem on parametric perturbations.
We observe that the marginal function (6.1) happens to be nonsmooth even in
classical situations with a smooth function ϕ and a simple constant multifunction
Φ. To study generalized differential properties of marginal functions is one of the
principal topics in sensitivity analysis.

In what follows we obtain comprehensive results on evaluating the subdifferen-
tials (2.7) and (2.8) for the class of marginal functions (6.1) in Asplund spaces. Note
that if ϕ(x, y) = ϕ(y) and Φ is single-valued, the marginal function (6.1) coincides
with the composition

(ϕ ◦ Φ)(x) := ϕ(Φ(x)),(6.2)

and subdifferential formulas for (6.1) are reduced to chain rules in nonsmooth
subdifferential calculus that are crucial to the theory and applications of nonsmooth
analysis. In this way we obtain refined chain rules for the subdifferentials under
consideration using the scalarization formula in Section 5.

The main results of this section consist of three theorems that are generally
independent and different in proofs, although they have essential intersections. To
formulate the results let us consider the parametric minimum set

M(x) := {y ∈ Φ(x)| ϕ(x, y) = m(x)}(6.3)

associated with (6.1). We always assume that the multifunction M : X ⇒ Y in
(6.3) has the following lower semicompactness property around the reference point
x̄: there exists a neighborhood U of x̄ such that for any x ∈ U and any sequence
xk → x as k → ∞ there is a sequence yk ∈ M(xk), k = 1, 2, . . . , which contains a
subsequence convergent in the norm topology of Y . Obviously, any multifunction
lower semicontinuous around x̄ is lower semicompact around this point. If dim Y
< ∞, the lower semicompactness property is inherent in any multifunction whose
values are nonempty and uniformly bounded around x̄.

Our first theorem on the subdifferentiation of (6.1) is concerned with general
nonsmooth functions ϕ and multifunctions Φ in Asplund spaces and generalizes
to infinite dimensions the results and arguments in Mordukhovich [43, 44, 45]. In
its formulation we use the normal compactness conditions for sets and functions
discussed in Sections 3 and 4. The proof is related to employing the sum rule in
Theorem 4.1, which is based on the extremal principle.

6.1. Theorem. Let Φ : X ⇒ Y be a closed-graph multifunction between Asplund
spaces X and Y , let ϕ : X×Y → R̄ be l.s.c. on gph Φ, and let the multifunction M
in (6.3) be lower semicompact around x̄ ∈ domm. Assume that for any ȳ ∈ M(x̄)
either ϕ or gph Φ is normally compact around (x̄, ȳ) and the qualification condition

6 ∃(x?, y?) ∈ ∂∞ϕ(x̄, ȳ) with (y?,−x?) ∈ gphD?Φ(x̄, ȳ)(6.4)
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holds. Then one has the inclusions

∂m(x̄) ⊂
⋃

[x? +D?Φ(x̄, ȳ)(y?)| (x?, y?) ∈ ∂ϕ(x̄, ȳ), ȳ ∈M(x̄)],(6.5)

∂∞m(x̄)⊂
⋃

[x?+D?Φ(x̄, ȳ)(y?)|(x?, y?)∈∂∞ϕ(x̄, ȳ)), ȳ ∈M(x̄)].(6.6)

Moreover, m is subdifferentially regular at x̄ and (6.5) becomes an equality if Φ is
single-valued around x̄, ϕ is subdifferentially regular at (x̄,Φ(x̄)) and either

(a) dim Y < ∞, Φ is Lipschitz continuous around x̄ with gph Φ regular at
(x̄,Φ(x̄)), or

(b) Φ is strictly differentiable at x̄.

Proof. First observe that the marginal function (6.1) is l.s.c. around x̄ under the
general assumptions made. Indeed, let U be a neighborhood of x̄ from the lower
semicompactness condition for M . Taking any x ∈ U and sequence xk → x, we
find a sequence yk ∈M(xk) that contains a subsequence convergent to some point
y ∈ Y . Since Φ has closed graph, one gets (x, y) ∈ gph Φ. Now using the l.s.c. of
ϕ on gph Φ, we obtain the relationships

m(x) ≤ ϕ(x, y) ≤ lim inf
k→∞

ϕ(xk, yk) = lim inf
k→∞

m(xk),

that establish the l.s.c. of m(x) around x̄.
Let us consider the function f : X × Y → R̄ defined by

f(x, y) := ϕ(x, y) + δ((x, y), gph Φ),(6.7)

and let us prove that

∂m(x̄) ⊂ {x? ∈ X?| (x?, 0) ∈ ∂f(x̄, ȳ), ȳ ∈M(x̄)}.(6.8)

Since m(x) is l.s.c. around x̄, we use Theorem 2.9(iii) and for any x? ∈ ∂m(x̄)

find sequences xk → x̄ and x?k
w?→ x? such that m(xk) → m(x̄) as k → ∞ and

x?k ∈ ∂̂m(xk) for all k = 1, 2, . . . . By virtue of (2.11), for any ε > 0 there exists a
sequence ηk ↓ 0 as k →∞ with

〈x?k, x− xk〉 ≤ m(x)−m(xk) + ε‖x− xk‖ ∀x ∈ Bηk(xk), k = 1, 2, . . . .

Due to (6.7), this implies

(x?k, 0) ∈ ∂̂f(xk, yk) ∀yk ∈M(xk), k = 1, 2, . . . .(6.9)

Now using the lower semicompactness of M at x̄, one can select a sequence yk ∈
M(xk) that contains a subsequence convergent to some point ȳ ∈ Φ(x̄). Since
m(xk) → m(x̄), one concludes that ȳ ∈ M(x̄) and f(xk, yk) → f(x̄, ȳ) as k → ∞.
Employing (6.9) and (2.16), we arrive at (x?, 0) ∈ ∂f(x̄, ȳ) and finish the proof of
(6.8).

Next we use Theorem 4.1 to represent the subdifferential ∂f(x̄, ȳ) in (6.8) for the
sum of two functions (6.7). One can easily check that the qualification condition
(4.1) is reduced to (6.4), and inclusions (4.2) and (6.8) imply (6.5).

To establish inclusion (6.6) for the singular subdifferentials we observe that

∂∞m(x̄) ⊂ {x? ∈ X?| (x?, 0) ∈ ∂∞f(x̄, ȳ), ȳ ∈M(x̄)}.(6.10)

This can be proved similarly to (6.8) based on the last representation in (2.17).
Then we derive (6.6) from (6.10) employing inclusion (4.3) in Theorem 4.1.
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It remains to consider the equality cases in the theorem when Φ is single-valued
around x̄ and m(x) = ϕ(x,Φ(x)). First we are going to show that

∂m(x̄) = {x? ∈ X?| (x?, 0) ∈ ∂f(x̄,Φ(x̄))}(6.11)

if either Φ is strictly differentiable at x̄ or Φ is Lipschitz continuous around x̄ and
Y is finite dimensional.

Indeed, let Φ : X → Y be Lipschitz continuous around x̄ with modulus l ≥ 0
and let (x?, 0) ∈ ∂f(x̄,Φ(x̄)). Using (2.16) and (6.7), one can find sequences xk →
x̄, x?k

w?→ x?, and y?k
w?→ 0 such that ϕ(xk,Φ(xk))→ ϕ(x̄,Φ(x̄)) as k →∞ and

lim inf
x→xk

ϕ(x,Φ(x))− ϕ(xk,Φ(xk))− 〈(x?k, y?k), (x,Φ(x))− (xk,Φ(xk))〉
‖(x,Φ(x))− (xk,Φ(xk))‖ ≥ 0(6.12)

for each k = 1, 2, . . . . If dim Y <∞, then ‖y?k‖ → 0, and (6.12) implies

lim inf
x→xk

ϕ(x,Φ(x))− ϕ(xk,Φ(xk))− 〈x?k, x− xk〉
‖x− xk‖

≥ −εk,

where εk := (l + 1)‖y?k‖ → 0 as k →∞. Therefore, x?k ∈ ∂̃εkm(x̄k) for each k, and
we get x? ∈ ∂m(x̄) by virtue of (2.12). This proves equality (6.11) for the case of
dim Y <∞.

Next we prove that if Φ is strictly differentiable at x̄, equality (6.11) holds with
no finite dimensionality assumption. It is well known that any mapping strictly
differentiable at x̄ is Lipschitz continuous around x̄ with some modulus l ≥ 0. By
definition (2.6) of the strict derivative, for any sequence γν ↓ 0 there is a sequence
ην ↓ 0 as ν →∞ such that

‖Φ(u)− Φ(x)− Φ′(x̄)(u− x)‖ ≤ γν‖u− x‖ ∀x, u ∈ Bην (x̄), ν = 1, 2, . . . .
(6.13)

Using (6.12) and (6.13), we can select subsequences kν →∞ and xkν → x̄ as ν →∞
along which one has

ϕ(x,Φ(x))− ϕ(xkν ,Φ(xkν ))− 〈x?kν + (Φ′(x̄))?y?kν , x− xkν 〉
≤ −γν‖y?kν‖(1 + l)‖x− xkν‖ ∀x ∈ Bην/2(xkν ), ν = 1, 2, . . . .

The latter implies that

x?kν + (Φ′(x̄))?y?kν ∈ ∂̃ενϕ(xkν ,Φ(xkν )), ν = 1, 2, . . . ,(6.14)

where εν := γν‖y?kν‖(1 + l) → 0 as ν → ∞. Passing to the limit in (6.14) and

observing that x?kν + (Φ′(x̄))?y?kν
w?→ x? as ν →∞, we obtain x? ∈ ∂m(x̄) by virtue

of (2.12). This proves equality (6.11) for the case of strictly differentiable mappings
Φ between Asplund spaces.

To finish the proof of the theorem it remains to apply the subdifferential reg-
ularity statement in Theorem 4.1 to the sum of functions (6.7) in equality (6.11)
under the assumptions made. Due to Proposition 2.3 the strict differentiability of
Φ at x̄ ensures the regularity of its graph at (x̄,Φ(x̄)) for any Banach spaces. Note
that the latter properties are equivalent for locally Lipschitzian mappings between
finite dimensional spaces (cf. [48, 62]), i.e., case (b) is contained in (a) if both X
and Y are finite dimensional.
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6.2. Remark. One can easily see that for ϕ(x, y) = ϕ(y) the qualification condition
(6.4) is reduced to

∂∞ϕ(ȳ) ∩ ker D?Φ(x̄, ȳ) = {0} ∀ȳ ∈M(x̄),

that is automatically fulfilled if, in particular, ϕ is Lipschitz continuous around ȳ;
cf. Proposition 2.5. Respectively, inclusions (6.5) and (6.6) can be written as

∂m(x̄) ⊂
⋃

[D?Φ(x̄, ȳ)(y?)| y? ∈ ∂ϕ(ȳ), ȳ ∈M(x̄)],(6.15)

∂∞m(x̄) ⊂
⋃

[D?Φ(x̄, ȳ)(y?)| y? ∈ ∂∞ϕ(ȳ), ȳ ∈M(x̄)].(6.16)

If Φ is single-valued and continuous around x̄, then (6.15) and (6.16) with ȳ =
Φ(x̄) present chain rules for the generalized subdifferentiation of compositions (6.2)
in terms of the coderivative of Φ at x̄. Using the scalarization formula proved in
Section 5, we obtain the following chain rules involving only subdifferentials.

6.3. Corollary. Let X and Y be Asplund spaces, let Φ : X → Y be strictly Lip-
shitzian at x̄, let ϕ : Y → R̄ be normally compact around ȳ = Φ(x̄), and let the
qualification condition

∂∞ϕ(ȳ) ∩ ker ∂〈·,Φ〉(x̄) = {0}
hold. Then one has the inclusions

∂(ϕ ◦ Φ)(x̄) ⊂
⋃

y?∈∂ϕ(ȳ)

∂〈y?,Φ〉(x̄),

∂∞(ϕ ◦ Φ)(x̄) ⊂
⋃

y?∈∂∞ϕ(ȳ)

∂〈y?,Φ〉(x̄).
(6.17)

Moreover, ϕ ◦ Φ is subdifferential regular at x̄, and (6.17) becomes an equality if
ϕ is subdifferentially regular at ȳ and either Φ is strictly differentiable at x̄ or the
graph of Φ is regular at (x̄, ȳ) with dim Y <∞.

Proof. This follows directly from Theorems 5.2 and 6.1 by taking into account
Remark 6.2.

6.4. Remark. The chain rules obtained generalize previous results known in this
direction. Note that Kruger [31] proved inclusion (6.17) when X has a Fréchet dif-
ferentiable renorm, dim Y <∞, Φ and ϕ are, respectively, locally and directionally
Lipschitzian. Jourani and Thibault [29] provided a different proof of (6.17) when
X is reflexive, Y admits a Fréchet differentiable renorm, ϕ is locally Lipschitzian,
and Φ is compactly Lipschitzian at x̄; cf. the remark before Theorem 5.2. Ioffe
[22, 24] established chain rules for approximate subdifferentials in finite and infinite
dimensions which coincide with (6.17) when, in particular, both X and Y are re-
flexive, ϕ and Φ are locally Lipschitzian, and Φ has a strict prederivative at x̄; see
also Section 9. Recently Jourani and Thibault [30] extended the latter results for
G-subdifferentials in Banach spaces to the case of compactly epi-Lipschitz functions
ϕ and strongly compactly Lipschitzian mappings Φ.

Next let us consider a special class of marginal functions (6.1) where ϕ is strictly
differentiable at reference points. For this class we obtain refinements of the re-
sults in Theorem 6.1 and Corollary 6.3 that, in particular, ensure a subdifferential
chain rule in the form of equality with no regularity and/or strictly Lipschitzness
assumptions in infinite dimensions; see [44, 49] for finite dimensional counterparts.
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6.5. Theorem. Let X and Y be Asplund spaces. Assume that Φ : X → Y is
single-valued and Lipschitz continuous around x̄ and ϕ : X × Y → R is strictly
differentiable at (x̄,Φ(x̄)). Then for m(x) = ϕ(x,Φ(x)) one has

∂m(x̄) = ϕ′x(x̄, ȳ) + ∂〈ϕ′y(x̄, ȳ),Φ〉(x̄) with ȳ = Φ(x̄).(6.18)

Proof. Let x? ∈ ∂m(x̄), i.e., there are sequences xk → x̄ and x?k
w?→ x? as k → ∞

such that x?k ∈ ∂̂m(xk) for all k; see representation (2.16). Now we use the strict
differentiablity of ϕ at (x̄, ȳ) similarly to the proof of equality (6.11) in Theorem
6.1. To this end, for any sequence γν ↓ 0 we find ην ↓ 0 and kν → ∞ as ν → ∞
with

〈ϕ′y(x̄, ȳ),Φ(x)− Φ(xkν )〉 − 〈x?kν − ϕ
′
x(x̄, ȳ), x− xkν 〉

≥ −γν(1 + l)‖x− xkν‖ ∀x ∈ Bην/2(xkν ), ν = 1, 2, . . . ,
(6.19)

where l ≥ 0 is a Lipschitz modulus of Φ around x̄. It follows from (6.19) and (2.11)
that

x?kν − ϕ
′
x(x̄, ȳ) ∈ ∂̃εν 〈ϕ′y(x̄, ȳ),Φ〉(xkν ) with εν := γν(1 + l).

The latter implies the inclusion “⊂” in (6.18) by virtue of (2.12). To justify
the opposite inclusion we employ the same arguments starting with a point x? ∈
∂〈ϕ′y(x̄, ȳ),Φ〉(x̄). This ends the proof of the theorem.

6.6. Remark. If Φ is not strictly differentiable at x̄, then equality (6.18) does not
follow from the equality conclusions of Theorem 6.1 even for finite dimensional
spaces X and Y . On the other hand, the assumptions of Theorem 6.5 do not
ensure the subdifferential regularity of the composite function. Note also that we
get a subdifferential chain rule in (6.18) although Φ is not assumed to be strictly
Lipschitzian at x̄ as in Corollary 6.3.

Let us present another set of conditions that provide equality in the subdiffer-
entiation formula (6.5) with no regularity. The next theorem also contains a new
equality chain rule for the singular subdifferentials (2.8).

6.7. Theorem. (i) Let X and Y be Asplund spaces, let Φ : X → Y be strictly
differentiable at x̄ with Φ′(x̄) invertible (i.e., surjective and one-to-one), and let
ϕ : X × Y → R̄ be represented as

ϕ(x, y) = ϕ1(x) + ϕ2(y),

where ϕ1 is strictly differentiable at x̄ and ϕ2 is l.s.c. around ȳ = Φ(x̄). Then

∂m(x̄) = ϕ′1(x̄) + (Φ′(x̄))?∂ϕ2(ȳ).(6.20)

(ii) If in assumptions (i) ϕ1 is Lipschitz continuous around x̄, then

∂∞m(x̄) = (Φ′(x̄))?∂∞ϕ2(ȳ).(6.21)

Proof. Observe that

m(x) = ϕ(x,Φ(x)) = ϕ1(x) + ϕ2(Φ(x)).

If ϕ1 is strictly differentiable at x̄, one has

∂m(x̄) = ϕ′1(x̄) + ∂(ϕ2 ◦ Φ)(x̄)

according to Corollary 4.3(i). Let us prove that

∂(ϕ2 ◦Φ)(x̄) = (Φ′(x̄))?∂ϕ2(ȳ) with ȳ = Φ(x̄)(6.22)
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if Φ is strictly differentiable at x̄ and Φ′(x̄) is invertible. First we justify the inclusion
“⊃” in (6.22). Remember that due to Leach [36] the inverse mapping Φ−1 is locally
single-valued and strictly differentiable at Φ(x̄) with the strict derivative (Φ′(x̄))−1

at this point.
Let y? ∈ ∂ϕ2(ȳ). Employing (2.16), one has sequences yk → ȳ and y?k

w?→ y?

as k → ∞ with y?k ∈ ∂̂ϕ2(yk) for all k. Now using the fact that Φ is a local
homeomorphism around x̄ and the procedure similar to the proofs of equalities
(6.11) and (6.18) in Theorems 6.1 and 6.5, for any sequence γν ↓ 0 we find ην ↓
0, xν → x̄ and a subsequence kν →∞ as ν →∞ such that

ϕ2(Φ(x))− ϕ2(Φ(xν))− 〈(Φ′(x̄))?y?kν , x− xν〉 ≥ −εν‖x− xν‖
∀x ∈ Bην (xν), ν = 1, 2, . . . ,

where εν := γν .‖y?kν‖. By virtue of (2.11) and (2.12) the latter implies the inclusion
“⊃” in (6.22).

To justify the opposite inclusion we represent ϕ2 in the form

ϕ2(y) = (ψ ◦ Φ−1)(y) with ψ(x) := (ϕ2 ◦ Φ)(x).

Applying the inclusion “⊃” in (6.22) to the composition ψ ◦ Φ and taking into
account that (Φ−1)′(ȳ) = (Φ′(x̄))−1, we obtain the inclusion “⊂” in (6.22). This
proves formula (6.20).

To establish (ii) we observe that ∂∞m(x̄) = ∂∞(ϕ2 ◦ Φ)(x̄) if ϕ1 is Lipschitz
continuous around x̄; see Corollary 4.3(ii). The proof of

∂∞(ϕ2 ◦ Φ)(x̄) = (Φ′(x̄))?∂∞ϕ2(Φ(x̄))

is similar to (6.22) by using the last representation in (2.17). We complete the proof
of the theorem.

6.8. Remarks. (a) For ϕ(x, y) = ϕ(y), the results presented in Theorems 6.5 and
6.7 provide new chain rules with equality for the generalized differentiation of com-
positions (6.2) in infinite dimensions. They have many useful consequences and
applications, some of which are considered in the next section.

(b) Theorems 6.5 and 6.7 and some related results for the sequential subdiffer-
entials under consideration can be obtained in general Banach spaces. The basic
framework for this development is the limiting representation (2.12), where ε > 0
cannot be dismissed like in the case of Asplund spaces. We refer to [52] for more
details.

Now let us apply the chain rules obtained to evaluate the normal cone (2.2) to
sets given in the form

Φ−1(Λ) := {x ∈ X| Φ(x) ∈ Λ},
where the mapping Φ : X → Y is continuous around x̄ and the set Λ ⊂ Y is closed.

6.9. Corollary. Let X and Y be Asplund spaces, let Λ be normally compact around
Φ(x̄), and let the qualification condition

N(Φ(x̄); Λ) ∩ kerD?Φ(x̄) = {0}
hold. Then one has the inclusion

N(x̄; Φ−1(Λ)) ⊂
⋃

[D?Φ(x̄)(y?)| y? ∈ N(Φ(x̄); Λ)],(6.23)
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where D?Φ(x̄)(y?) can be replaced by ∂〈y?,Φ〉(x̄) if Φ is strictly Lipschitzian at
x̄. In addition, the set Φ−1(Λ) is regular at x̄, and equality holds in (6.23) if Λ
is regular at Φ(x̄) and either assumptions (a) or (b) of Theorem 6.1 are fulfilled.
Moreover, one has the equality

N(x̄; Φ−1(Λ)) = (Φ′(x̄))?N(Φ(x̄); Λ)(6.24)

if Φ is strictly differentiable at x̄ and Φ′(x̄) is invertible.

Proof. The first part of these results related to (6.23) follows from Theorem 6.1
and Corollary 6.3 with ϕ(x, y) = δ(y,Λ). Equality (6.24) is implied by Theorem
6.7(i).

6.10. Remark. Using calculus results, we can obtain various applications and de-
velopments of the subdifferentiation formulas for marginal functions in the case
of special representations of the multifunction Φ in (6.1). One of the most im-
portant classes of multifunctions arising in nonlinear analysis and optimization is
represented in the form of the so-called parametric constraint systems

Φ(x) = {y ∈ Y | g(x, y) ∈ Λ, (x, y) ∈ Ω},(6.25)

where g : X × Y → Z is a continuous mapping between Banach spaces. Among
others, this class includes multi-valued solution maps to parametric generalized
equations and variational inequalities; see, e.g., [47, 48, 61] and references therein.
Employing the results in Corollaries 4.5 and 6.9, one can compute the coderivative of
Φ in (6.25) and get effective representations of the marginal function subdifferentials
in terms of the normal and differential constructions for g and Λ; cf. [47, 48] for the
case of finite dimensions. Developing this approach and using the corresponding
criteria in [50, 53], we are able to obtain various results on metric regularity and
Lipschitzian stability of parametric constraint and variational systems in infinite
dimensions; see [53].

7. More calculus

In this section we consider extended-real-valued functions defined on Asplund
spaces and prove calculus results related to the generalized differentiation of prod-
ucts, quotients, maxima, minima as well as partial derivatives and mean values.
The results obtained are based on the chain rules in Section 6.

Let us start with product rules. For simplicity, we consider the case of locally
Lipschitzian functions when the product rules obtained involve only subdifferentials,
without using coderivatives as in the general case.

7.1. Theorem. Let X be an Asplund space and let ϕi : X → R, i = 1, 2, be
Lipschitz continuous around x̄. Then one has product rules of the equality form

∂(ϕ1 · ϕ2)(x̄) = ∂(ϕ2(x̄)ϕ1 + ϕ1(x̄)ϕ2)(x̄)(7.1)

and of the inclusion form

∂(ϕ1 · ϕ2)(x̄) ⊂ ∂(ϕ2(x̄)ϕ1)(x̄) + ∂(ϕ1(x̄)ϕ2)(x̄)(7.2)

which becomes an equality if one of the functions ϕi, i = 1, 2, is strictly differen-
tiable at x̄. Moreover, equality holds in (7.2), and ϕ1 ·ϕ2 is subdifferentially regular
at x̄ when both functions ϕ2(x̄)ϕ1 and ϕ1(x̄)ϕ2 are subdifferentially regular at this
point.



NONSMOOTH SEQUENTIAL ANALYSIS IN ASPLUND SPACES 1263

Proof. To establish (7.1) we employ equality (6.18) in Theorem 6.5 with Φ : X →
R2 and ϕ : R2 → R defined by Φ(x) := (ϕ1, ϕ2) and ϕ(y1, y2) := y1 · y2. Inclusion
(7.2) and the other statements of the theorem follow from (7.1) due to Theorem
4.1 and Corollary 4.3(i).

7.2. Remark. The results obtained generalize the classical product rule to the case
of nonsmooth functions. Note that the right-hand side of (7.2) is equal to

ϕ2(x̄)∂ϕ1(x̄) + ϕ1(x̄)∂ϕ2(x̄)

if ϕi(x̄) ≥ 0, i = 1, 2. This follows from the obvious equality ∂(αϕ)(x̄) = α∂ϕ(x̄),
valid for any ϕ and α ≥ 0. Furthermore, one always has

∂(αϕ)(x̄) = α∂+ϕ(x̄) for α < 0,

where ∂+ϕ(x̄) := −∂ϕ(x̄) is the superdifferential of ϕ at x̄ that is considerably
different from the subdifferential (2.7) for nonsmooth functions; see, e.g., [44].

The next theorem provides useful quotient rules for subdifferentials of locally
Lipschitzian functions.

7.3. Theorem. Let ϕ2(x̄) 6= 0 under the general assumptions of the previous the-
orem. Then one has quotient rules of the equality form

∂(ϕ1/ϕ2)(x̄) = [∂(ϕ2(x̄)ϕ1)− ϕ1(x̄)ϕ2)(x̄)]/[ϕ2(x̄)]2(7.3)

and of the inclusion form

∂(ϕ1/ϕ2)(x̄) ⊂ [∂(ϕ2(x̄)ϕ1)(x̄)− ∂(ϕ1(x̄)ϕ2)(x̄)]/[ϕ2(x̄)]2,(7.4)

where equality holds when one of the functions ϕi, i = 1, 2, is strictly differentiable
at x̄. Furthermore, ϕ1/ϕ2 is subdifferentially regular at x̄, and (7.4) becomes an
equality if both functions ϕ2(x̄)ϕ1 and −ϕ1(x̄)ϕ2 are subdifferentially regular at this
point.

Proof. This is proved similarly to Theorem 7.1, using the representation (ϕ1/ϕ2)(x)
= (ϕ ◦Φ)(x), where Φ : X → R2 and ϕ : R2 → R are defined by

Φ(x) := (ϕ1(x), ϕ2(x)) and ϕ(y1, y2) := y1/y2.

7.4. Corollary. Let X be an Asplund space and let ϕ : X → R be Lipschitz con-
tinuous around x̄ with ϕ(x̄) 6= 0. Then one has

∂(1/ϕ)(x̄) = −∂+ϕ(x̄)/ϕ2(x̄).

Proof. This follows from the quotient rule (7.3) with ϕ1 = 1 and ϕ2 = ϕ.

Now we consider the maximum function of the form

(
∨
ϕj)(x) := max{ϕj(x)| j = 1, . . . , n}, n ≥ 2,(7.5)

where ϕj : X → R̄ for j = 1, . . . , n. Let us construct the sets

J(x̄) := {j ∈ {1, . . . , n}| ϕj(x̄) = (
∨
ϕj)(x̄)},

Λ(x̄) := {(λ1, . . . , λn) ∈ Rn| λj ≥ 0, λ1 + · · ·λn = 1, λj(ϕj(x̄)− (
∨
ϕj)(x̄)) = 0}.

The following theorem generalizes and extends in various directions the corre-
sponding results in [22, 24, 31, 43, 44].
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7.5. Theorem. (i) Let X be Asplund and let ϕj be l.s.c. around x̄ for j ∈ J(x̄)
and upper semicontinuous at x̄ for j /∈ J(x̄). Assume that the functions ϕj are
normally compact around x̄ for all but one j ∈ J(x̄) and the qualification condition
(4.1) considered for j ∈ J(x̄) is fulfilled. Then

∂(
∨
ϕj)(x̄) ⊂

⋃
{
∑
j∈J(x̄)

λj ◦ ∂ϕj(x̄)| (λ1, . . . , λn) ∈ Λ(x̄)},(7.6)

∂∞(
∨
ϕj)(x̄) ⊂

∑
j∈J(x̄)

∂∞ϕj(x̄),(7.7)

where we define λ◦∂ϕ(x) by λ∂ϕ(x) for λ > 0 and by ∂∞ϕ(x) for λ = 0. Moreover,
the maximum function (7.5) is subdifferentially regular at x̄, and equality holds in
(7.6) if the sets epi ϕj are regular at (x̄, ϕj(x̄)) for j ∈ J(x̄).

(ii) Let X be Asplund and let ϕj , j = 1, . . . , n, be Lipschitz continuous around
x̄. Then one has the inclusions

∂(
∨
ϕj)(x̄) ⊂

⋃
{∂(

∑
j∈J(x̄)

λjϕj)(x̄)| (λ1, . . . , λn) ∈ Λ(x̄)}

⊂ co{∂ϕj(x̄)| j ∈ J(x̄)},
(7.8)

where equality holds and the maximum function is subdifferentially regular at x̄ if
the functions ϕj are subdifferentially regular at x̄ for j ∈ J(x̄).

Proof. First we prove inclusion (7.6), denoting the maximum function (7.5) by
g(x). Let x? ∈ ∂g(x̄), i.e., (x?,−1) ∈ N((x̄, g(x̄)); epi g). We observe that epi
g =

⋂n
j=1(epi ϕj), and (x̄, g(x̄)) is an interior point of the set epi ϕj for any j /∈ J(x̄)

due to the upper semicontinuity assumption. Taking this into account and also that
the space X×R is Asplund, one can apply Corollary 4.5 to the above normal cone,
considering there only j ∈ J(x̄). It is clear that the qualification condition (4.17) in
Corollary 4.5 is reduced to (4.1) with j ∈ J(x̄) for the case considered. In this way,
we represent (x?,−1) as a sum of (x?j ,−λj) ∈ N((x̄, ϕj(x̄)); epi ϕj) with j ∈ J(x̄)
and (λ1, . . . , λn) ∈ Λ(x̄). The latter implies (7.6) according to the definitions.

To prove (7.7) we use the same procedure based on Corollary 4.5. The equal-
ity and regularity statements in (i) follow from the corresponding conclusions in
Corollary 4.5 and the fact that the regularity of epi g at (x̄, g(x̄)) always implies
the subdifferential regularity of (7.5) at x̄.

Now let us prove (ii). To do this we observe that the maximum function (7.5)
is represented as a composition (ϕ ◦ Φ)(x) with Lipschitz continuous mappings
Φ : X → Rn and ϕ : Rn → R defined by

Φ(x) := (ϕ1(x), . . . , ϕn(x)) and ϕ(y1, . . . , yn) := max{yj | j = 1, . . . , n}.

Note that the function ϕ defined is convex and its subdifferential is well known
in convex analysis; see. e.g., [10]. Now employing Corollary 6.3, we get the first
inclusion in (7.8), that implies the second one by virtue of Corollary 4.3. Note
that if ϕj , j ∈ J(x̄), are Lipschitz continuous around x̄, then the second inclusion
in (7.8) coincides with (7.7). Moreover, in this case the regularity of epi ϕj at
(x̄, ϕj(x̄)) is equivalent to the subdifferential regularity of ϕj at x̄. Therefore, the
regularity and equality statements in (ii) follows from the corresponding results in
(i). This ends the proof of the theorem.
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Now we consider the minimum function

(
∧
ϕj)(x) := min{ϕj(x)| j = 1, . . . , n}, n ≥ 2,(7.9)

for ϕj : X → R̄. Note that (7.9) and (7.5) are essentially different from the
viewpoint of the unilateral subdifferentials (2.7) and (2.8). Denoting J(x) := {j ∈
{1, . . . , n}| ϕj(x) = (

∧
ϕj)(x̄)}, one can obtain the following subdifferentiation

formulas for (7.9) similarly to the finite dimensional case; cf. [22, 44].

7.6. Theorem. Let X be an Asplund space. Assume that the functions ϕj and
(7.9) are l.s.c. around x̄ for j ∈ J(x̄) and ϕj are l.s.c. at this point for j /∈ J(x̄).
Then one has

∂(
∧
ϕj)(x̄) ⊂

⋃
{∂ϕj(x̄)| j ∈ J(x̄)},(7.10)

∂∞(
∧
ϕj)(x̄) ⊂

⋃
{∂∞ϕj(x̄)| j ∈ J(x̄)}.(7.11)

Proof. To prove (7.10) let us pick a sequence {xk} ⊂ X such that xk → x̄ and
ϕj(xk) → (

∧
ϕj)(x̄) for j ∈ J(x̄) as k → ∞. Using the l.s.c. of ϕj at x̄ for

j /∈ J(x̄), we get J(xk) ⊂ J(x̄). According to (2.11) with ε = 0 this yields

∂̂(
∧
ϕj)(xk) ⊂

⋃
{∂̂ϕj(xk)| j ∈ J(x̄)} ∀k = 1, 2, . . . .

The latter implies (7.10) due to representation (2.16) in Theorem 2.9(iii). To prove
(7.11) we use similar arguments based on representation (2.17).

Next we apply chain rules to obtain connections between “full” and “partial”
subdifferentials for functions of many variables. Let ϕ : X × Y → R̄ be finite at
(x̄, ȳ) and let ∂xϕ(x̄, ȳ) and ∂∞x ϕ(x̄, ȳ) be, respectively, its partial subdifferential
and partial singular subdifferential in x at this point, i.e., the corresponding sub-
differentials (2.7) and (2.8) of the function ϕ(·, ȳ) at x̄. The following theorem (cf.
[39, 44, 60] in finite dimensions) establishes the relationships between the partial
subdifferentials under consideration and projections of their full counterparts.

7.7. Theorem. Let X and Y be Asplund spaces, and let ϕ : X × Y → R̄ be l.s.c.
and normally compact around (x̄, ȳ). Under the qualification condition

6 ∃y? 6= 0 with (0, y?) ∈ ∂∞ϕ(x̄, ȳ)

one has the inclusions
∂xϕ(x̄, ȳ)⊂{x? ∈ X?| (x?, y?) ∈ ∂ϕ(x̄, ȳ) for some y?∈Y ?},
∂∞x ϕ(x̄, ȳ)⊂{x? ∈ X?| (x?, y? ∈ ∂∞ϕ(x̄, ȳ) for some y?∈Y ?}.(7.12)

Moreover, ϕ(·, ȳ) is subdifferentially regular at x̄, and (7.12) becomes an equality if
ϕ is subdifferentially regular at (x̄, ȳ).

Proof. We can represent ϕ(x, ȳ) = (ϕ ◦ Φ)(x), where Φ : X → X × Y is a smooth
mapping defined by Φ(x) := (x, ȳ). Then all the results of the theorem follow from
Corollary 6.3.

In conclusion of this section we employ the chain rule (6.17) to obtain a non-
smooth generalization of the classical mean value theorem in terms of the sequential
subdifferential constructions in Asplund spaces. For any function ϕ : X → R̄ we
define the symmetric subdifferential

∂0ϕ(x̄) := ∂ϕ(x̄) ∪ ∂+ϕ(x̄) = ∂ϕ(x̄) ∪ [−∂(−ϕ)(x̄)](7.13)
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at x̄, which is a nonconvex subset of X? with the symmetry property ∂0(−ϕ)(x̄) =
−∂0ϕ(x̄). The following nonsmooth analogue of the Fermat stationary principle is
useful in the sequel.

7.8. Proposition. Let X be a Banach space, let ϕ : X → R̄, and let x̄ ∈ domϕ.
Then 0 ∈ ∂ϕ(x̄) if ϕ has a local minimum at x̄, and 0 ∈ ∂+ϕ(x̄) if x̄ has a local
maximum at x̄. So 0 ∈ ∂0ϕ(x̄) if x̄ is either a minimum or a maximum point of ϕ.

Proof. If x̄ is a minimum point of ϕ then 0 ∈ ∂̂ϕ(x̄) ⊂ ∂ϕ(x̄). This follows directly
from (2.11) and implies the other statements in the proposition according to the
definitions.

To formulate the mean value theorem we denote ∂∞,+ϕ(x̄) := −∂∞(−ϕ)(x̄),
(b − a)⊥ := {x? ∈ X?| 〈x?, b − a〉 = 0}, [a, b] := {a + t(b − a)| 0 ≤ t ≤ 1}, and
similarly (a, b), [a, b), (a, b] for any a, b ∈ X.

7.9. Theorem. Let X be Asplund and let ϕ : X → R̄ be continuous in [a, b] ⊂ X.
Assume that both ϕ and −ϕ are normally compact around every point in (a, b) and

[∂∞ϕ(x) ∪ ∂∞,+ϕ(x)] ∩ (b− a)⊥ = {0} ∀x ∈ (a, b).(7.14)

Then there is a point c ∈ (a, b) such that

ϕ(b)− ϕ(a) ∈ 〈∂0ϕ(c), b− a〉.(7.15)

Proof. Let us consider the real-valued function

f(t) := ϕ(a+ t(b− a)) + t(ϕ(a)− ϕ(b)), 0 ≤ t ≤ 1,(7.16)

that is continuous in [0, 1] with f(0) = f(1) = ϕ(a). Employing the classical
Weierstrass theorem and excluding the trivial case f(t) ≡ const, we find a point
θ ∈ (0, 1) where f attains either its minimum or maximum on [0, 1]. According to
Proposition 7.8 one has 0 ∈ ∂0f(θ). Due to (7.16) the latter implies

ϕ(b)− ϕ(a) ∈ ∂0
t ϕ(a+ θ(b− a))(7.17)

where the right-hand side is the symmetric subdifferential (7.13) of the function
t→ ϕ(a+ t(b− a)) at t = θ.

Now let us represent ϕ(a+ t(b− a)) in the composition form

ϕ(a+ t(b− a)) = (ϕ ◦ Φ)(t), 0 ≤ t ≤ 1,(7.18)

with a smooth mapping Φ : [0, 1]→ X defined by Φ(t) := a+ t(b− a). We employ
Corollary 6.3 to compute the symmetric subdifferential (7.13) of the composition
(7.18), furnishing this separately for the subdifferential (2.7) and its superdifferen-
tial counterpart. Note that assumption (7.14) implies the qualification condition in
Corollary 6.3 for both functions ϕ and −ϕ. Therefore, we derive (7.15) from (7.17)
with c := a+ θ(b− a).

7.10. Corollary. Let X be an Asplund space and let ϕ : U → R be Lipschitz
continuous in some open set U ⊂ X containing [a, b]. Then there exists c ∈ (a, b)
where (7.15) holds.

Proof. This follows from Theorem 7.9 by virtue of Proposition 2.5, that ensures
(7.14).
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7.11. Remarks. (a) One cannot replace ∂0ϕ by ∂ϕ in (7.15). A simple counter-
example is provided by the function ϕ(x) = −|x| defined on the real interval [−1, 1]
with ∂ϕ(0) = {−1, 1}.

(b) Theorem 7.9 extends the results in Mordukhovich [43, 44, 49] to infinite
dimensions. Corollary 7.10 was obtained by Kruger [31] for Lipschitz continuous
functions defined on spaces with Fréchet differentiable renorms; cf. also [40, 54].

(c) Some results in this section based on the chain rules in Theorems 6.5 and
6.7 hold true in any Banach spaces; cf. Remark 6.8(b) and the proofs furnished
above. They include product and quotient rules in equality forms (7.1) and (7.3),
minimum rules in Theorem 7.6, a version of the mean value theorem, etc. More
details can be found in [52].

8. Approximate mean value theorem and some applications

This section is concerned with mean value results of a new type that are grouped
around the so-called approximate mean value theorem. Results of this type were
first obtained by Zagrodny [70] for subgradients of Clarke and related directional
derivatives in Banach spaces. Here we present an advanced version of such results
involving Fréchet subgradients of l.s.c. functions defined in Asplund spaces. We also
consider some important applications of the results obtained, including relationships
between our basic sequential constructions and Clarke’s concepts of generalized
normals and subgradients. We begin by formulating the following useful property
of Fréchet subgradients, proved by Fabian [18, Lemma 3].

8.1. Proposition. Let X be an Asplund space and let ϕi : X → (−∞,∞], i = 1, 2,
be two l.s.c. functions whose sum ϕ1 + ϕ2 attains an isolated minimun at some x̄.
Given γ > 0, we assume that the set {x ∈ Bγ(x̄)| ϕ2(x) ≤ α} is norm compact for
any α ∈ R. Then there are x1, x2 ∈ Bγ(x̄) with |ϕi(xi)−ϕi(x̄)| ≤ γ, i = 1, 2, such
that

0 ∈ ∂̂ϕ1(x1) + ∂̂ϕ2(x2).

Now let us prove the approximate mean value theorem as follows.

8.2. Theorem. Let X be an Asplund space and let ϕ : X → (−∞,∞] be a l.s.c.
function finite at two given points a 6= b. Then for any point c ∈ [a, b) satisfying

ϕ(c)+
ϕ(b)− ϕ(a)
‖b− a‖ ‖c− b‖ ≤ ϕ(x)+

ϕ(b)− ϕ(a)
‖b− a‖ ‖x− b‖ ∀x ∈ [a, b](8.1)

there exist sequences xk
ϕ→ c and x?k ∈ ∂̂ϕ(xk) such that

lim inf
k→∞

〈x?k, b− xk〉 ≥
ϕ(b)− ϕ(a)
‖b− a‖ ‖b− c‖,(8.2)

lim inf
k→∞

〈x?k, b− a〉 ≥ ϕ(b)− ϕ(a).(8.3)

Moreover, when c 6= a one has

lim
k→∞

〈x?k, b− a〉 = ϕ(b)− ϕ(a).(8.4)

Proof. Let us denote by f(x) the function on the right-hand side of (8.1). This
function is l.s.c. and, therefore, attains its minimum over the compact set [a, b] at
some point c ∈ [a, b]. Due to f(a) = f(b) = ϕ(a) one can always take c ∈ [a, b), i.e.,
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the set of points c satisfying (8.1) is nonempty. Moreover, for any given c in (8.1)
and each k = 1, 2, . . . the function

fk(x) := ϕ(x)+
‖x− b‖
‖b− a‖ (ϕ(b)− ϕ(a))+

1
k
‖x− c‖+δ(x, [a, b])(8.5)

attains an isolated local minimum at c.
Let ϕ1 := ϕ and let ϕ2 be the sum of the last three functions in (8.5). One can

check that all the assumptions of Proposition 8.1 hold. Taking there x̄ = c and
γ = 1/k, we find xk

ϕ→ c and yk → c as k → ∞ such that 0 ∈ ∂̂ϕ(xk) + ∂̂ϕ2(yk)
for all k = 1, 2, . . . . Observe that each term of ϕ2 is convex and the first two
terms are continuous. Employing the Moreau-Rockafellar subdifferential theorem
in convex analysis for ∂̂ϕ2(yk) = ∂ϕ2(yk) and taking into account the well-known
subdifferentiation formulas for the convex functions in (8.5) at yk 6= b, we find
elements x?k, u

?
k, v

?
k, and w?k in X? such that x?k ∈ ∂̂ϕ(xk), w?k ∈ (1/k)B?,

〈u?k, b− yk〉 = −ϕ(b)− ϕ(a)
‖b− a‖ ‖yk − b‖, ‖u?k‖ =

|ϕ(b)− ϕ(a)|
‖b− a‖ ,(8.6)

〈v?k, x− yk〉 ≤ 0 ∀x ∈ [a, b],(8.7)

and

x?k + u?k + v?k + w?k = 0 ∀k = 1, 2, . . . .(8.8)

It follows from (8.6), (8.8), and (8.7) as x = b that

〈x?k, b− yk〉 ≥
ϕ(b)− ϕ(a)
‖b− a‖ ‖yk − b‖ −

1
k
‖yk − b‖ ∀k = 1, 2, . . . .(8.9)

Let us observe that

(x− b)‖y − b‖ = (y − b)‖x− b‖ ∀x, y ∈ [a, b].(8.10)

So multiplying both side of (8.9) by ‖xk−b‖/yk−b‖, using (8.10) for x = xk, y = yk,
and taking the lim inf as k →∞, we obtain (8.2). Similarly, (8.9) and (8.10) with
x = a, y = yk yield (8.3).

Now let c 6= a. Without loss of generality we assume that yk 6= a for k = 1, 2, . . . .
In this case one easily gets from (8.7) the equality 〈v?k, b − c〉 = 0 for all k. Using
this equality together with (8.6) and (8.8), we have

〈x?k, b− c〉 =
ϕ(b)− ϕ(a)
‖b− a‖ ‖yk − b‖+〈u?k, c− yk〉 − 〈w?k, b− c〉(8.11)

for all k = 1, 2, . . . . Noting that 〈u?k, c− yk〉 → 0 and 〈w?k, b− c〉 → 0 as k →∞, we
obtain from (8.11) the equality

lim
k→∞

〈x?k, b− c〉 =
ϕ(b)− ϕ(a)
‖b− a‖ ‖c− b‖,

that yields (8.4) by virtue of (8.10) for x = a and y = c. This completes the proof
of the theorem.

8.3. Remark. Using another procedure, Zagrodny [70] first proved his approximate
mean value theorem for the Clarke subdifferential in Banach spaces. In fact his
proof automatically works for any subdifferentials satisfying certain requirements
mentioned in [14]. Due to the sum rule in Theorem 4.1, those requirements hold for
our basic subdifferential (2.7) in Asplund spaces, but not for its Fréchet counterpart
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∂̂ϕ. Loewen [40] established a version of the approximate mean value theorem
for the Fréchet subdifferential in a Banach space whose norm is Fréchet smooth
outside the origin. To prove this result, he employed a “fuzzy sum rule” for Fréchet
subgradients and some properties of the smooth norm. After completing this paper,
we received Thibault’s preprint [66] that contains a proof of a “presubdifferential”
version of the approximate mean value theorem based on the main idea of Zagrodny
[70] and also some ideas of Borwein and Preiss [6]. Using Proposition 2.7 or the
sum rule (4.2) proved above, we can conclude that the Fréchet subdifferential in
Asplund spaces is a presubdifferential in the sense of [66] and, therefore, conditions
(8.2) and (8.3) in Theorem 8.2 follow from the corresponding results of [66]. Note
that our proof of the approximate mean value theorem is different from those in
[40, 66, 70].

It is worth mentioning that the mean value inequality (8.3) holds even in the
case when ϕ(b) = ∞. Indeed, one has the following easy consequence of Theorem
8.2.

8.4. Corollary. Let X be an Asplund space and let ϕ : X → (−∞,∞] be a l.s.c.
function finite at some point a ∈ X. Then for any b ∈ X there exist c ∈ [a, b] and a
pair of sequences xk → c as k →∞ and x?k ∈ ∂̂ϕ(xk), k = 1, 2, . . . , such that (8.3)
holds.

Proof. It remains to prove (8.3) when ϕ(b) =∞. To do this we consider, following
[40, 70], a sequence of functions

φk(x) =
{
ϕ(x) if x 6= b,
ϕ(a) + k if x = b,

and employ Theorem 8.2 for each k = 1, 2, . . . .

8.5. Corollary. Under the assumptions of Corollary 8.4, for any b ∈ X and ε > 0
one has

|ϕ(b)− ϕ(a)| ≤ ‖b− a‖ sup{‖x?‖ s.t. x? ∈ ∂̂ϕ(c), c ∈ [a, b] + εB}.

Proof. This follows directly from Corollary 8.4.

When ϕ is Lipschitz continuous, we can pass to the limit in (8.3) and obtain a
mean value inequality in terms of the subdifferential (2.7).

8.6. Corollary. Let X be an Asplund space, let U ∈ X be an open set containing
[a, b], and let ϕ : U → R be Lipschitz continuous. Then one has

〈x?, b− a〉 ≥ ϕ(b)− ϕ(a) for some x? ∈ ∂ϕ(c), c ∈ [a, b).(8.12)

Proof. According to Theorem 8.2 one can find a point c ∈ [a, b) and sequences xk →
c, x?k ∈ ∂̂ϕ(xk) satisfying (8.3). It follows directly from the Lipschitz continuity
of ϕ and representation (2.11) as ε = 0 that the sequence {x?k} is bounded in X?

and, due to Asplundity of X, is weak-star sequentially compact. Denoting by x?

its limiting point, one has x? ∈ ∂ϕ(c) due to (2.9). This proves (8.12).

8.7. Remark. Using Corollary 8.6 and arguments similar to Borwein and Preiss [6,
Theorem 3.2], one can establish the mean value inequality (8.12) with c ∈ (a, b). It
was proved in [6] for spaces with smooth renorms.
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Now let us consider some useful applications of the approximate mean value the-
orem in Asplund spaces. The first one characterizes the local Lipschitzian behavior
of l.s.c. functions, generalizing Loewen’s results in [40, Theorem 4.1].

8.8. Theorem. Let X be an Asplund space and let ϕ : X → (−∞,∞] be a l.s.c.
function finite at x̄. Then the following assertions involving a constant l ≥ 0 are
equivalent :

(a) There exists γ > 0 such that

∂̂ϕ(x) ⊂ lB? for any x ∈ Bγ(x̄) with |ϕ(x)− ϕ(x̄)| ≤ γ.

(b) ∂̂ϕ(x) ⊂ lB? in some neighborhood of x̄.
(c) ϕ is Lipschitz continuous around x̄ with modulus l.

Proof. To prove (a)=⇒(b) we use Corollary 8.4 and arguments similar to [40, Theo-
rem 4.1]. Implication (b)=⇒(c) follows from Corollary 8.5. The Lipschitz condition
in (c) implies (a) by virtue of (2.11) as ε = 0.

8.9. Corollary. Let X be an Asplund space, let ϕ : X → (−∞,∞] be a l.s.c.
function, and let U ⊂ X be an open set. Then ϕ is locally constant in U if and
only if

x? ∈ ∂̂ϕ(x) =⇒ x? = 0 ∀x ∈ U.(8.13)

Thus (8.13) is equivalent to ϕ being constant on U if U is connected.

Proof. This follows from Theorem 8.8 as l = 0.

8.10. Remarks. (a) The result obtained implies a nonconvex generalization of the
Bishop-Phelps density theorem in Corollary 3.4. Indeed, we take ϕ(x) = δ(x,Ω)
and use (2.13) as ε = 0.

(b) An analogue of Corollary 8.9 for the proximal subdifferential was first ob-
tained by Clarke [12] in finite dimensions and then was generalized by Clarke,
Stern, and Wolenski [13] to the case of Hilbert spaces. Moreover, the paper [13]
contains a proximal analogue of Theorem 8.8 and its application to monotonicity
properties of l.s.c. functions in Hilbert spaces. The latter result in terms of Fréchet
subgradients was obtained by Loewen [40] on the basis of the approximate mean
value theorem in spaces with Fréchet differentiable norms. Developing this line and
applying Corollary 8.4, we can easily get the monotonicity result in the Asplund
space setting.

To conclude this section we use the results obtained above to establish rela-
tionships between our sequential limiting constructions and Clarke’s concepts of
generalized normals and subgradients. According to [10], Clarke’s normal cone and
generalized gradient (subdifferential) for extended-real-valued functions in Banach
spaces are defined by the following three-step procedure. If ϕ : X → R is Lipschitz
continuous around x̄, then

∂Cϕ(x̄) := {x? ∈ X?| 〈x?, v〉 ≤ ϕ◦(x̄; v) ∀v ∈ X},(8.14)

where the generalized directional derivative is given by

ϕ◦(x̄; v) := lim sup
x→x̄, t↓0

[ϕ(x+ tv)− ϕ(x)]/t.(8.15)
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Further, Clarke’s normal cone can be defined by using the generalized gradient
(8.14) of the Lipschitz continuous distance function

NC(x̄; Ω) := cl?[
⋃
λ>0

λ∂Cdist(x̄,Ω)] ∀x̄ ∈ cl Ω.(8.16)

Finally, if ϕ : X → R̄ is finite at x̄, then

∂Cϕ(x̄) := {x? ∈ X?| (x?,−1) ∈ NC((x̄, ϕ(x̄)); epi ϕ)}.(8.17)

It is proved in [31] that in any Banach space X one always has the inclusions

N(x̄; Ω) ⊂ NC(x̄; Ω) and ∂ϕ(x̄) ⊂ ∂Cϕ(x̄)(8.18)

for the normal cone (2.2) and the subdifferential (2.7). Let us obtain more precise
relationships between the constructions under consideration in Asplund spaces.

8.11. Theorem. Let X be an Asplund space. Then the following relationships
hold :

(i) For any closed set Ω ⊂ X and x̄ ∈ Ω one has

NC(x̄; Ω) = cl? coN(x̄; Ω).(8.19)

(ii) For any function ϕ : X → R̄ l.s.c. around x̄ ∈ domϕ one has

∂Cϕ(x̄) = cl? co[∂ϕ(x̄) + ∂∞ϕ(x̄)].(8.20)

If, in particular, ϕ is Lipschitz continuous around x̄, then

∂Cϕ(x̄) = cl? co ∂ϕ(x̄).(8.21)

Proof. First let us consider the case when ϕ is Lipschitz continuous in some neigh-
borhood U of x̄. Using condition (8.3) in Theorem 8.2 and the construction of
Clarke’s directional derivative (8.15), we can establish the representation

ϕ◦(x̄; v) = max{〈x?, v〉| x? ∈ ∂ϕ(x̄)},

that holds for any v ∈ X; cf. [6, proof of Theorem 3.3]. The latter implies (8.21)
by virtue of (8.14). Applying (8.21) to the distance function ϕ(x) = dist(x,Ω), one
has ⋃

λ>0

λ∂Cdist(x; Ω) =
⋃
λ>0

λ[cl?co ∂dist(x,Ω)] ⊂ cl?co[
⋃
λ>0

λ∂dist(x,Ω)].

This yields NC(x̄; Ω) ⊂ cl?co N(x̄; Ω) by virtue of (8.16) and Proposition 2.6. The
opposite inclusion in (8.19) follows directly from the first part of (8.18) and the fact
that Clarke’s normal cone is convex and closed in the weak-star topology of X?.

It remains to prove (8.20) for any l.s.c. function ϕ finite at x̄. According to (2.7)
and (2.8) one has N((x̄, ϕ(x̄)); epi ϕ) = N1 ∪N2, where

N1 := {λ(x?,−1)| x? ∈ ∂ϕ(x̄), λ > 0} and N2 := {(x?, 0)| x? ∈ ∂∞ϕ(x̄)}.

Thus (8.20) follows from (2.17) and (2.19) due to Loewen’s extension [37] of the
Rockafellar finite dimensional result [59]. (Note that Proposition 4.2 in [37] is
presented for normed linear spaces but its proof is actually valid for any locally
convex spaces, i.e., it covers the case of X?). This completes the proof of the
theorem.
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8.12. Remarks. (a) In finite dimensions, the basic relationship (8.19) is equivalent
to the Clarke proximal normal formula; cf. [10, 39, 63]. In [67], Treiman obtained
the first infinite dimensional version of (8.19) and the associated subdifferential
formulas in spaces with Fréchet differentiable renorms using the original definition
(2.2) with ε ↓ 0. Borwein and Strojwas [8] showed that one can let ε = 0 in those
formulas if X is reflexive; cf. also an alternative proof in Loewen [37] for the case
of Hilbert spaces. Borwein and Preiss [6] established formula (8.21) for locally
Lipschitz functions in spaces with Fréchet differentiable renorms, while the other
relationships (8.19) and (8.20) in the same setting were first mentioned by Ioffe [25].
Theorem 8.11 contains extensions of these results to the case of Asplund spaces.

(b) In [57], Preiss obtained a profound refinement of formula (8.21) for locally
Lipschitz functions in Asplund spaces. In the refined formula, the sequential limit-
ing points of Fréchet subgradients in (8.21) are replaced by those for the classical
Fréchet derivative of ϕ, which is proved to exist on a dense set.

9. Connections with approximate subdifferentials

In this section we study relationships between our sequential normal and subd-
ifferential constructions and the “approximate subdifferentials” of Ioffe [22, 23, 24],
who developed another line of infinite dimensional generalizations of the noncon-
vex constructions in [41, 42]. Ioffe proposed several modifications of approximate
subdifferentials; some of them are well defined in arbitrary locally convex spaces.
Loosely speaking, all these subdifferentials are related to upper limits of more prim-
itive subdifferentials based on the Dini directional derivatives. Here we consider the
case of Asplund spaces, where these constructions can be defined as follows. (Note
that any Asplund space is a “weakly trustworthy” space; cf. [23, 18]).

Let ϕ : X → R̄ be l.s.c. around x̄ ∈ domϕ. First the A-subdifferential of ϕ at x̄
is defined by taking the topological upper limit

∂Aϕ(x̄) := Limsup
x
ϕ→x̄, ε↓0

∂−ε ϕ(x)(9.1)

(with respect to the norm topology in X and the weak-star topology in X?) of the
Dini subdifferential constructions

∂−ε ϕ(x) := {x? ∈ X?| 〈x?, v〉 ≤ dϕ(x; v) + ε‖v‖ ∀v ∈ X},
where

dϕ(x; v) := lim inf
u→v, t↓0

t−1(ϕ(x+ tu)− ϕ(x)).

Then, using the A-subdifferential of the Lipschitz continuous distance function,
the G-normal cone to Ω ⊂ X at x̄ ∈ cl Ω is defined by

NG(x̄; Ω) := cl?ŇG(x̄; Ω),(9.2)

where the construction

ŇG(x̄; Ω) :=
⋃
λ>0

λ∂Adist(x̄,Ω)(9.3)

is called the nucleus of NG(x̄; Ω). Finally, the G-subdifferential of ϕ at x̄ is defined
geometrically as

∂Gϕ(x̄) := {x? ∈ X?| (x?,−1) ∈ NG((x̄, ϕ(x̄)); epi ϕ)},(9.4)
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while its G-nucleus ∂̌Gϕ(x̄) corresponds to (9.4) with NG replaced by ŇG. Note
that constructions (9.1) and (9.3) coincide with those introduced in [20] under the
name of M -subdifferential and M -normal cone, respectively.

Ioffe proves in [24] that the G-subdifferential (9.4) is always smaller than its
A-counterpart (9.1), and they both coincide with the G-nucleus ∂̌Gϕ(x̄) for direc-
tionally Lipschitz functions. Using the sequential (vs. topological) upper limit in
(9.1), one can consider the sequential analogues

∂σAϕ(x̄) := lim sup
ϕ

x→x̄, ε↓0

∂−ε ϕ(x), Ňσ
G(x̄; Ω) :=

⋃
λ 0

λ∂σAdist(x̄,Ω),

∂̌σGϕ(x̄) := {x? ∈ X?| (x?,−1) ∈ Ňσ
G((x̄, ϕ(x̄)); epi ϕ)}

(9.5)

of the topological objects defined above; cf. [25]. The question is: how do all these
constructions relate to our sequential normal cone (2.2) and subdifferential (2.7)?
To answer this question we will use some recent results of Borwein and Fitzpatrick
[4].

Recall that a Banach space X is weakly compactly generated (WCG) provided
there is a weakly compact set K such that X = cl(span K). Clearly all reflexive
Banach spaces and all separable Banach spaces are weakly compactly generated.
For the case of Asplund spaces, there are precise characterizations of the WCG
property; see [4, 16]. Note that the WCG property subtantially narrows the class
of Asplund spaces; it implies, in particular, the existence of a Fréchet differentiable
renorm [16]. Let us present the basic interrelations between weak-star topological
and sequential limits that were proved in [4, Theorem 1.3].

9.1. Proposition. Let X be a Banach space and let {Sk} be a sequence of bounded
subsets of X? such that Sk+1 ⊂ Sk for all k = 1, 2, . . . . The following assertions
hold:

(i) If the unit ball of X? is weak-star sequentially compact, then
∞⋂
k=1

cl? Sk = cl?{ lim
k→∞

x?k| x?k ∈ Sk for all k}.

(ii) If X is a subspace of a WCG space, then
∞⋂
k=1

cl? Sk = { lim
k→∞

x?k| x?k ∈ Sk for all n}.

Now we establish the main relationships between the subdifferential and normal
cone constructions under consideration.

9.2. Theorem. Let X be an Asplund space. Then the following hold :
(i) For any function ϕ : X → R̄ l.s.c. around x̄ ∈ domϕ one has the inclusions

∂ϕ(x̄) ⊂ ∂σAϕ(x̄) ⊂ ∂Aϕ(x̄).(9.6)

Moreover, if ϕ is Lipschitz continuous around x̄, then

cl?(∂ϕ(x̄)) = cl?(∂σAϕ(x̄)) = ∂Aϕ(x̄).(9.7)

In the latter case the sets ∂ϕ(x̄) and ∂σAϕ(x̄) are weak-star closed, and

∂ϕ(x̄) = ∂σAϕ(x̄) = ∂Aϕ(x̄)(9.8)

if X is a WCG space.
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(ii) Let Ω ⊂ X and x̄ ∈ cl Ω. Then

N(x̄; Ω) ⊂ Ňσ
G(x̄; Ω) ⊂ ŇG(x̄; Ω) ⊂ NG(x̄; Ω) = cl?N(x̄; Ω).(9.9)

Moreover, if X is a WCG space, then

N(x̄; Ω) = Ňσ
G(x̄; Ω) = ŇG(x̄; Ω).(9.10)

Proof. One can easily check from the definitions that ∂̂ϕ(x) ⊂ ∂−ε ϕ(x) for any
x ∈ domϕ and ε ≥ 0. Therefore, inclusions (9.6) follow directly from (9.1), (9.5),
and Theorem 2.9(iii).

Let us prove (9.7) for any function ϕ that is Lipschitz continuous around x̄.
Based on the definitions, we observe the following representations:

∂Aϕ(x̄)=
∞⋂
k=1

cl?Sk and ∂σAϕ(x̄)={ lim
k→∞

x?k| x?k∈Sk for all k},(9.11)

where Sk :=
⋃
{∂−1/kϕ(x) with ‖x − x̄‖ ≤ 1/k}. Obviously Sk+1 ⊂ Sk for all

k = 1, 2, . . . . Moreover, all the sets Sk are bounded in X? due to the Lipschitz
continuity of ϕ around x̄. Employing Proposition 9.1(i), we conclude that ∂Aϕ(x̄) =
cl?(∂σAϕ(x̄)). To establish (9.7) it remains to verify ∂σAϕ(x̄) ⊂ cl?(∂ϕ(x̄)). The latter
follows from the inclusion

∂σAϕ(x̄) ⊂ ∂ϕ(x̄) + V ?(9.12)

for any weak-star neighborhood V ? of the origin in X?.
To prove (9.12) we observe that for any neighborhood V ? under consideration

there exist a finite dimensional subspace L ⊂ X and a number r > 0 such that

L0 + 3rB? ⊂ V ?, where L0 := {x? ∈ X?| 〈x?, x〉 ≤ 0 ∀x ∈ L}.

Let x? ∈ ∂σAϕ(x̄), i.e., there exist xk → x̄, εk ↓ 0, and x?k
w?→ x? with x?k ∈ ∂−εkϕ(xk)

for all k. We always take k big enough to get 0 < εk ≤ r and 1/k ≤ r. Using the
definition of the Dini ε-subdifferential, one concludes that for any r > 0 and finite
dimensional subspace L ⊂ X the function

fk(x) := ϕ(x)− 〈x?k, x− xk〉+ 2r‖x− xk‖+ δ(x− xk, L)(9.13)

attains a local minimun at xk for each k; cf. [22, Lemma 1]. Therefore, 0 ∈ ∂̂fk(xk)
and we can apply Proposition 2.7 for the sum of functions in (9.13). Employing
this result with ε = 0 and γ = r, we find x̃k ∈ B1/k(xk) such that

x?k ∈ ∂̂ϕ(x̃k) + 3rB? + L0 ⊂ ∂̂ϕ(x̃k) + V ?(9.14)

for all k. Since ϕ is Lipschitz continuous around x̄, one has the uniform boundedness
of ∂̂ϕ(x) around this point due to Theorem 8.8. Taking into account the weak-star
sequential compactness of bounded sets in X? and representation (2.9), we obtain
(9.12) by passing to the limit in (9.14) as k →∞. This proves equalities (9.7).

Now let X be a WCG space, while ϕ is still Lipschitz continuous around x̄.
Then one has cl?(∂σAϕ(x̄)) = ∂σAϕ(x̄) = ∂Aϕ(x̄) due to (9.11) and Proposition
9.1(ii). Using the same procedure, we conclude that ∂ϕ(x̄) is weak-star closed; cf.
[4]. Therefore, (9.8) follows from (9.7) in the WCG case.

To establish the normal cone relationships (9.9) and (9.10) in (ii) we just observe
that all these conclusions follow from (i) and Proposition 2.6 due to definitions (9.2),
(9.3), and (9.5). This completes the proof of the theorem.



NONSMOOTH SEQUENTIAL ANALYSIS IN ASPLUND SPACES 1275

9.3. Corollary. Let X be an Asplund space and let ϕ : X → R̄ be l.s.c. around x̄.
Then one has

∂ϕ(x̄) ⊂ ∂̌σGϕ(x̄) ⊂ ∂̌Gϕ(x̄) ⊂ ∂Gϕ(x̄) = cl?(∂ϕ(x̄)).(9.15)

If, in addition, X is a WCG space and ϕ is Lipschitz continuous around x̄, then

∂ϕ(x̄) = ∂̌σGϕ(x̄) = ∂̌Gϕ(x̄) = ∂Gϕ(x̄).(9.16)

Proof. The inclusions in (9.15) immediately follow from (9.9) by virtue of the defi-
nitions. To obtain the equality in (9.15) from the one in (9.9) we observe that

L ∩NG((x̄, ϕ(x̄)); epi ϕ) = L ∩ cl?N((x̄, ϕ(x̄)); epi ϕ) = cl?(L ∩N((x̄, ϕ(x̄)); epi ϕ))

with L := X? × {−1} ⊂ X? ×R. Finally, under the WCG property of X and the
Lipschitz continuity of ϕ the set ∂ϕ(x̄) is weak-star closed (see the proof of Theorem
9.2) and equalities (9.16) follow from (9.15). This proves the corollary.

9.4. Remarks. (a) Theorem 9.2 immediately implies the same relationships (9.5)
between the singular subdifferential (2.8) and its G-counterparts for any l.s.c. func-
tions in Asplund spaces.

(b) Equalities (9.16) can be established not only for locally Lipschitz functions
but also for a more general class of functions satisfying the normal compactness
condition (Section 4) in WCG Asplund spaces. This follows from the fact that
∂ϕ(x̄) is weak-star closed for such functions. The latter is proved by Loewen [38]
for reflexive spaces (that is essential in his proof) and appears in our paper [53] in
the general case considered. Similarly, all the normal cones in (9.10) are weak-star
closed and coincide with NG(x̄; Ω) if Ω is normally compact around x̄ in the case
of WCG Asplund spaces.

(c) In [4], Borwein and Fitzpatrick give examples showing that sequential and
topological limits of derivative objects can provide quite different sets outside of
WCG spaces. In particular, their Example 2.4 demonstrates that our basic sequen-
tial subdifferential (2.7) may be strictly smaller than the G-subdifferential (9.4) and
its nucleus even for the case of Lipschitz continuous (concave) functions defined on
spaces with Fréchet differentiable norms.

(d) In [25], Ioffe proves the equality NG(x̄; Ω) = cl?N(x̄; Ω) and the corre-
sponding equalities for the subdifferentials in the case of spaces with Fréchet dif-
ferentiable renorms. Note that Theorem 1 in [25] actually claims the equality
N(x̄; Ω) = Ňσ

G(x̄; Ω), but there is a gap in the proof of the basic Lemma 4 therein
related to the difference between the sequential and topological closures.

In [5], Borwein and Ioffe establish that the nucleus (8.3) of the G-normal cone
and the corresponding subdifferential can be represented as weak-star closures of
sequential constructions in Banach spaces having differentiable renorms of any kind
(Fréchet, Gâteaux, etc.). For the case of spaces with Fréchet differentiable renorms
they prove the representation

ŇG(x̄; Ω) =
∞⋃
l=1

cl?{ lim
k→∞

x?k| x?k ∈ N l
F (xk; Ω), xk

Ω→ x̄},(9.17)

where N l
F (x; Ω) is the collection of all F-normals of rank l to the closed set Ω at

x ∈ Ω, defined as follows: x? ∈ N l
F (x; Ω) if there exists a function ψ : X → R

Fréchet differentiable in a neighborhood U of x such that x? = ψ′(x), ψ(x) = 0, ψ
is Lipschitz continuous on U with modulus l, and ψ(u) ≤ 0 for all u ∈ Ω ∩ U .
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Let us show that our sequential normal cone (2.2) is related to the limiting set
in (9.17) with no weak-star closure.

9.5. Theorem. Let X be a Banach space having an equivalent Fréchet differen-
tiable norm and let Ω be a closed subset of X. Then for any x̄ ∈ Ω one has

N(x̄; Ω) =
∞⋃
l=1

{ lim
k→∞

x?k| x?k ∈ N l
F (xk; Ω), xk

Ω→ x̄}.(9.18)

Proof. It easily follows from the definitions that the right-hand side of (9.18) cannot
be bigger than N(x̄; Ω). Let us prove the opposite inclusion using the normal
cone representation in Proposition 2.6. To this end we pick any x? ∈ ∂dist(x̄,Ω)

and then employ Theorem 2.9(iii) to find sequences xk → x̄ and x?k
w?→ x? as

k → ∞ with x?k ∈ ∂̂dist(xk,Ω) for all k. Following the proof of Proposition 1 in
[5], one can establish that for any u? ∈ ∂̂dist(u,Ω), ε > 0, and l > 1 there exist
v ∈ Ω and v? ∈ N l

F (v; Ω) such that ‖v − u‖ ≤ dist(u,Ω) + ε and v? ∈ u? + εB?.
Now taking (u, u?) = (xk, x?k) and a sequence εk ↓ 0 as k → ∞, for any natural
numbers k and l we find x̃k ∈ Ω and x̃?k ∈ N l

F (x̃k; Ω) (drop the index l) such that
‖x̃k − xk‖ ≤ ‖xk − x̄‖ + εk and ‖x̃?k − x?k‖ ≤ εk. Thus x̃k → x̄ and x̃?k → x? as
k →∞. This completes the proof of the theorem.

9.6. Remark. Similarly we can establish representations of the subdifferential (2.7)
and the singular subdiffefential (2.8) in terms of the limiting F -subdifferentials of
rank l [5] for spaces with Fréchet differentiable renorms.

As one can see, the sequential subdifferential (2.7) turns out to be the smallest
among all other subdifferentials considered above. Let us show that (2.7) is actually
minimal among any of the abstract subdifferentials satisfying natural requirements.

9.7. Theorem. Let X be a Banach space and let Dϕ : X ⇒ X? be an arbitrary
subdifferential mapping on the class of functions ϕ : X → R̄ with the invariance
property

Dφ(u) = Dϕ(x+ u) for φ(u) = ϕ(x+ u) ∀x, u ∈ X.(9.19)

Assume that the subdifferential Dϕ satisfies the following two requirements :
(i) Dϕ(u) is contained in the subdifferential of convex analysis for convex func-

tions of the form

ϕ(u) = 〈u?, u〉+ α‖u‖ ∀u? ∈ X?, α > 0.(9.20)

(ii) For any functions ϕi, i = 1, 2, such that ϕ1 is l.s.c. around u = 0, ϕ2 is
convex of form (9.20), and the sum ϕ1 +ϕ2 attains a local minimum at u = 0, one
has

0 ∈
⋂
γ>0

⋃
ui∈Uiγ

{Dϕ1(u1) +Dϕ2(u2) + γB?},(9.21)

where Uiγ := {u ∈ X with ‖u‖ ≤ γ, |ϕi(u)− ϕi(0)| ≤ γ}, i = 1, 2.
Then for any function ϕ and any point x̄ ∈ domϕ around which ϕ is l.s.c., one

has the inclusion

∂ϕ(x̄) ⊂ lim sup
x
ϕ→x̄

Dϕ(x).(9.22)
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In particular, if Dϕ is sequentially upper semicontinuous at x̄ in the sense that

Dϕ(x̄) = lim sup
x
ϕ→x̄

Dϕ(x),(9.23)

then ∂ϕ(x̄) ⊂ Dϕ(x̄).

Proof. Let ϕ be l.s.c. around x̄ and let x? ∈ ∂ϕ(x̄). By virtue of (2.12) one gets
sequences xk

ϕ→ x̄, x?k → x?, and εk ↓ 0 as k → ∞ with x?k ∈ ∂̃εkϕ(xk) for all k.
Now using (2.11), we find a sequence δk ↓ 0 such that

ϕ(x)− ϕ(xk)− 〈x?k, x− xk〉 ≥ −2εk‖x− xk‖ ∀x ∈ Bδk(xk), k = 1, 2, . . . .

The latter means that for any fixed k the function

fk(u) := ϕ(xk + u)− 〈x?k, u〉+ 2εk‖u‖(9.24)

attains a local minimum at u = 0. Denoting ϕ1(u) := ϕ(xk + u) and ϕ2(u) :=
−〈x?k, u〉 + 2εk‖u‖, we represent (9.24) as the sum of two functions satisfying the
assumptions in (ii). Now applying (9.21) along the sequence γ = εk and then using
properties (9.19) and (i), one gets uk ∈ X such that

‖uk‖ ≤ εk, |ϕ(xk + uk)− ϕ(xk)| ≤ εk, and

x?k ∈ Dϕ(xk + uk) + 3εkB? ∀k = 1, 2, . . . .
(9.25)

Passing to the limit in (9.25) as k → ∞, we obtain (9.22). The final inclusion
∂ϕ(x̄) ⊂ Dϕ(x̄) follows from (9.22) under the upper semicontinuity assumption
(9.23). This ends the proof of the theorem.

9.8. Remarks. (a) The “zero fuzzy sum rule” (9.21) was first established by Ioffe [21]
for Dini subdifferentials in finite dimensions. Such a rule appears to be necessary for
any reasonable subdifferentials, and now it is known for most subdifferential con-
structions used in applications; see [5, 9, 11, 18, 25, 27, 40, 51] and their references.
We observe that results in this vein are closely related to the ε-extremal principle
in Section 3; see [51] for more discussions. Note that (9.21) immediately follows
from the stationary principle and the “fuzzy sum rule” as in Proposition 2.7 with
ε = 0 for a subdifferential Dϕ. The latter obviously holds for any subdifferential
satisfying the exact sum rule

D(ϕ1 + ϕ2)(x̄) ⊂ Dϕ1(x̄) +Dϕ2(x̄)

on the class of functions in requirement (ii) of Theorem 9.7. Thus our basic sub-
differential (2.7) is the smallest among all reasonable subdifferential constructions
subject to the sequential closure operation in (9.23). Note that the latter regular-
ization procedure seems to be unavoidable for getting a full calculus and criteria
for openness and metric regularity of nonsmooth mappings as well as for important
applications to optimization, sensitivity, etc. According to the present paper and
related developments in [53] we can conclude that such properties of the subdiffer-
ential (2.7) are available in the case of Asplund spaces.

(b) Theorem 9.7 generalizes the finite dimensional results in Ioffe [22] and Mor-
dukhovich [43, 44], replacing the stationary and exact sum rule requirements by a
more flexible requirement (9.21). In the case of Banach spaces, Ioffe [24, Theorem
8.1] proves that the G-nucleus (9.4) belongs to any subdifferential Dϕ(x̄) which is
topologically upper semicontinuous at x̄ under some additional requirements. Note
that Theorem 9.7 establishes the minimality of (2.7) in a more general class of
subdifferentials, which may not be topologically closed.
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(c) In [24, Proposition 8.2], Ioffe states that ∂̌Gϕ(x̄) ⊂ ∂ϕ(x̄) for l.s.c. functions
defined on spaces with Fréchet differentiable renorms. However, he proves in fact
that the G-nucleus ∂̌Gϕ(x̄) is contained in the topological counterpart of (2.7), where
the sequential upper limit in representation (2.12) is replaced by the topological one.
The latter result follows directly from (9.15) in the general case of Asplund spaces.
Moreover, in Corollary 9.3 we prove that just the opposite inclusion ∂ϕ(x̄) ⊂ ∂̌Gϕ(x̄)
holds for any l.s.c. function defined on an Asplund space. To this end we note that in
general neither does ∂̌Gϕ admit the upper semicontinuity property topologically nor
does ∂ϕ have its sequential counterpart. Sufficient conditions for these properties
can be found, respectively, in [24] and [38, 53].
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40. P. D. Loewen, A mean value theorem for Fréchet subgradients, Nonlinear Anal. 23 (1994),

1365–1381. MR 95h:49023
41. B. S. Mordukhovich, Maximum principle in problems of time optimal control with nonsmooth

constraints, J. Appl. Math. Mech. 40 (1976), 960 - 969. MR 58:7284
42. B. S. Mordukhovich, Metric approximations and necessary optimality conditions for gen-

eral classes of nonsmooth extremal problems, Soviet Math. Dokl. 22 (1980), 526–530. MR
82b:90104

43. B. S. Mordukhovich, Nonsmooth analysis with nonconvex generalized differentials and adjoint
mappings, Dokl. Akad. Nauk BSSR 28 (1984), 976–979. MR 86c:49018

44. B. S. Mordukhovich, Approximation methods in problems of optimization and control,
“Nauka”, Moscow, 1988. MR 89m:49001



1280 BORIS S. MORDUKHOVICH AND YONGHENG SHAO

45. B. S. Mordukhovich, Sensitivity analysis in nonsmooth optimization, Theoretical Aspects of
Industrial Design (D. A. Field and V. Komkov, eds.), SIAM Proc. Appl. Math., vol. 58, Soc.
Indust. Appl. Math., Philadelphia, Pa., 1992, pp. 32–46. MR 93a:49012

46. B. S. Mordukhovich, Complete characterization of openness, metric regularity, and Lip-
schitzian properties of multifunctions, Trans. Amer. Math. Soc. 340 (1993), 1–35. MR
94a:49011

47. B. S. Mordukhovich, Lipschitzian stability of constraint systems and generalized equations,
Nonlinear Anal. 22 (1994), 173–206. MR 94m:49041

48. B. S. Mordukhovich, Stability theory for parametric generalized equations and variational
inequalities via nonsmooth analysis, Trans. Amer. Math. Soc. 343 (1994), 609–658. MR
94h:49031

49. B. S. Mordukhovich, Generalized differential calculus for nonsmooth and set-valued mappings,
J. Math. Anal. Appl. 183 (1994), 250–288. MR 95i:49029

50. B. S. Mordukhovich and Y. Shao, Differential characterizations of covering, metric regularity,
and Lipschitzian properties of multifunctions between Banach spaces, Nonlinear Anal. 25
(1995), 1401–1424. CMP 96:02

51. B. S. Mordukhovich and Y. Shao, Extremal characterizations of Asplund spaces, Proc. Amer.
Math. Soc. 124 (1996), 197–205.

52. B. S. Mordukhovich and Y. Shao, On nonconvex subdifferential calculus in Banach spaces, J.
of Convex Analysis 2 (1995), 211–228.

53. B. S. Mordukhovich and Y. Shao, Stability of set-valued mappings in infinite dimensions:
point criteria and applications, SIAM J. Control Optim. (to appear).

54. J.-P. Penot, A mean value theorem with small subdifferentials, preprint, February 1995.

55. R. R. Phelps, Convex functions, monotone operators and differentiability, 2nd edition, Lecture
Notes in Mathematics, vol. 1364, Springer, 1993. MR 94f:46055

56. R. Poliquin, Subgradient monotonicity and convex functions, Nonlinear Anal. 14 (1990), 305–
317. MR 91b:90155

57. D. Preiss, Differentiability of Lipschitz functions on Banach spaces, J. Func. Anal. 91 (1990),
312–345. MR 91g:46051

58. R. T. Rockafellar, Generalized directional derivatives and subgradients of nonconvex func-
tions, Can. J. Math. 32 (1980), 257–280. MR 81f:49006

59. R. T. Rockafellar, Proximal subgradients, marginal values, and augmented Lagrangians in
nonconvex optimization, Math. Oper. Res. 6 (1981), 424–436. MR 83m:90088

60. R. T. Rockafellar, Extensions of subgradient calculus with applications to optimization, Non-
linear Anal. 9 (1985), 665–698. MR 87a:90148

61. R. T. Rockafellar, Lipschitzian properties of multifunctions, Nonlinear Anal. 9 (1985), 867–
885. MR 87a:90149

62. R. T. Rockafellar, Maximal monotone relations and the second derivatives of nonsmooth
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