Nonsmooth sequential analysis in Asplund spaces
HTML articles powered by AMS MathViewer
- by Boris S. Mordukhovich and Yongheng Shao
- Trans. Amer. Math. Soc. 348 (1996), 1235-1280
- DOI: https://doi.org/10.1090/S0002-9947-96-01543-7
- PDF | Request permission
Abstract:
We develop a generalized differentiation theory for nonsmooth functions and sets with nonsmooth boundaries defined in Asplund spaces. This broad subclass of Banach spaces provides a convenient framework for many important applications to optimization, sensitivity, variational inequalities, etc. Our basic normal and subdifferential constructions are related to sequential weak-star limits of Fréchet normals and subdifferentials. Using a variational approach, we establish a rich calculus for these nonconvex limiting objects which turn out to be minimal among other set-valued differential constructions with natural properties. The results obtained provide new developments in infinite dimensional nonsmooth analysis and have useful applications to optimization and the geometry of Banach spaces.References
- Edgar Asplund, Fréchet differentiability of convex functions, Acta Math. 121 (1968), 31–47. MR 231199, DOI 10.1007/BF02391908
- Jean-Pierre Aubin and Hélène Frankowska, Set-valued analysis, Systems & Control: Foundations & Applications, vol. 2, Birkhäuser Boston, Inc., Boston, MA, 1990. MR 1048347
- J. P. Lehoczky, S. P. Sethi, and S. E. Shreve, A martingale formulation for optimal consumption/investment decision making, Optimal control theory and economic analysis, 2 (Vienna, 1984) North-Holland, Amsterdam, 1985, pp. 135–153. MR 879151
- J. M. Borwein and S. P. Fitzpatrick, Weak-star sequential compactness and bornological limit derivatives, J. of Convex Analysis (to appear).
- J. M. Borwein and A. D. Ioffe, Proximal analysis in smooth spaces, Set-Valued Anal. (to appear).
- J. M. Borwein and D. Preiss, A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions, Trans. Amer. Math. Soc. 303 (1987), no. 2, 517–527. MR 902782, DOI 10.1090/S0002-9947-1987-0902782-7
- J. M. Borwein and H. M. Strójwas, Tangential approximations, Nonlinear Anal. 9 (1985), no. 12, 1347–1366. MR 820646, DOI 10.1016/0362-546X(85)90095-1
- J. M. Borwein and H. M. Strójwas, Proximal analysis and boundaries of closed sets in Banach space. I. Theory, Canad. J. Math. 38 (1986), no. 2, 431–452. MR 833578, DOI 10.4153/CJM-1986-022-4
- J. M. Borwein and Q. J. Zhu, Viscosity solutions and viscosity subderivatives in smooth Banach spaces with applications to metric regularity, SIAM J. Control Optim. (to appear).
- Frank H. Clarke, Optimization and nonsmooth analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983. A Wiley-Interscience Publication. MR 709590
- Frank H. Clarke, Methods of dynamic and nonsmooth optimization, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 57, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989. MR 1085948, DOI 10.1137/1.9781611970142
- F. H. Clarke, An indirect method in the calculus of variations, Trans. Amer. Math. Soc. 336 (1993), no. 2, 655–673. MR 1118823, DOI 10.1090/S0002-9947-1993-1118823-3
- F. H. Clarke, R. J. Stern, and P. R. Wolenski, Subgradient criteria for monotonicity, the Lipschitz condition, and convexity, Canad. J. Math. 45 (1993), no. 6, 1167–1183. MR 1247540, DOI 10.4153/CJM-1993-065-x
- Rafael Correa, Alejandro Jofré, and Lionel Thibault, Subdifferential monotonicity as characterization of convex functions, Numer. Funct. Anal. Optim. 15 (1994), no. 5-6, 531–535. MR 1281560, DOI 10.1080/01630569408816579
- Michael G. Crandall and Pierre-Louis Lions, Hamilton-Jacobi equations in infinite dimensions. I. Uniqueness of viscosity solutions, J. Funct. Anal. 62 (1985), no. 3, 379–396. MR 794776, DOI 10.1016/0022-1236(85)90011-4
- Robert Deville, Gilles Godefroy, and Václav Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. MR 1211634
- I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353. MR 346619, DOI 10.1016/0022-247X(74)90025-0
- Marián Fabián, Subdifferentiability and trustworthiness in the light of a new variational principle of Borwein and Preiss, Acta Univ. Carolin. Math. Phys. 30 (1989), no. 2, 51–56. 17th Winter School on Abstract Analysis (Srní, 1989). MR 1046445
- B. E. Ginsburg and A. D. Ioffe, The maximum principle in optimal control of systems governed by semilinear equations, Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control (B. S. Mordukhovich and H. J. Sussmann, eds.), IMA Volumes in Mathematics and its Applications, vol. 78, Springer, 1996, pp. 81–110.
- A. D. Ioffe, Nonsmooth analysis: differential calculus of nondifferentiable mappings, Trans. Amer. Math. Soc. 266 (1981), no. 1, 1–56. MR 613784, DOI 10.1090/S0002-9947-1981-0613784-7
- A. D. Ioffe, Calculus of Dini subdifferentials of functions and contingent coderivatives of set-valued maps, Nonlinear Anal. 8 (1984), no. 5, 517–539. MR 741606, DOI 10.1016/0362-546X(84)90091-9
- H. Frankowska and B. Kaśkosz, Linearization and boundary trajectories of nonsmooth control systems, Canad. J. Math. 40 (1988), no. 3, 589–609. MR 960597, DOI 10.4153/CJM-1988-025-7
- A. D. Ioffe, Approximate subdifferentials and applications. II, Mathematika 33 (1986), no. 1, 111–128. MR 859504, DOI 10.1112/S0025579300013930
- A. D. Ioffe, Approximate subdifferentials and applications. III. The metric theory, Mathematika 36 (1989), no. 1, 1–38. MR 1014198, DOI 10.1112/S0025579300013541
- A. D. Ioffe, Proximal analysis and approximate subdifferentials, J. London Math. Soc. (2) 41 (1990), no. 1, 175–192. MR 1063554, DOI 10.1112/jlms/s2-41.1.175
- A. D. Ioffe, Nonsmooth subdifferentials: their calculus and applications, Proceedings of the First World Congress of Nonlinear Analysts, (V. Lakshmikantham, ed.), W. de Gruyter, Berlin, 1995.
- A. D. Ioffe and R. T. Rockafellar, The Euler and Weierstrass conditions for nonsmooth variational problems, Calculus of Variations and PDEs (to appear).
- A. Jofré, D. T. Luc, and M. Théra, $\varepsilon$-Subdifferential and $\varepsilon$-monotonicity, preprint, January 1995.
- A. Jourani and L. Thibault, A note on Fréchet and approximate subdifferentials of composite functions, Bull. Austral. Math. Soc. 49 (1994), no. 1, 111–115. MR 1262680, DOI 10.1017/S0004972700016142
- A. Jourani and L. Thibault, Extensions of subdifferential calculus rules in Banach spaces and applications, Can. J. Math. (to appear).
- A. Ya. Kruger, Properties of generalized differentials, Sibirsk. Mat. Zh. 26 (1985), no. 6, 54–66, 189 (Russian). MR 816504
- A. Ya. Kruger, Generalized differentials of nonsmooth functions and necessary conditions for an extremum, Sibirsk. Mat. Zh. 26 (1985), no. 3, 78–90, 224 (Russian). MR 792057
- A. Ya. Kruger, A covering theorem for set-valued mappings, Optimization 19 (1988), no. 6, 763–780. MR 967038, DOI 10.1080/02331938808843391
- A. Ja. Kruger and B. Š. Morduhovič, Extremal points and the Euler equation in nonsmooth optimization problems, Dokl. Akad. Nauk BSSR 24 (1980), no. 8, 684–687, 763 (Russian, with English summary). MR 587714
- A. Y. Kruger and B. S. Mordukhovich, Generalized normals and derivatives, and necessary optimality conditions in nondifferentiable programming, Part I: Depon. VINITI, No. 408-80; Part II: Depon. VINITI, No. 494-80, Moscow, 1980. (Russian)
- E. B. Leach, A note on inverse function theorems, Proc. Amer. Math. Soc. 12 (1961), 694–697. MR 126146, DOI 10.1090/S0002-9939-1961-0126146-9
- Philip D. Loewen, The proximal normal formula in Hilbert space, Nonlinear Anal. 11 (1987), no. 9, 979–995. MR 907818, DOI 10.1016/0362-546X(87)90079-4
- P. D. Loewen, Limits of Fréchet normals in nonsmooth analysis, Optimization and nonlinear analysis (Haifa, 1990) Pitman Res. Notes Math. Ser., vol. 244, Longman Sci. Tech., Harlow, 1992, pp. 178–188. MR 1184642
- Philip D. Loewen, Optimal control via nonsmooth analysis, CRM Proceedings & Lecture Notes, vol. 2, American Mathematical Society, Providence, RI, 1993. MR 1232864, DOI 10.1090/crmp/002
- Philip D. Loewen, A mean value theorem for Fréchet subgradients, Nonlinear Anal. 23 (1994), no. 11, 1365–1381. MR 1306676, DOI 10.1016/0362-546X(94)90132-5
- B. Sh. Mordukhovich, Maximum principle in the problem of time optimal response with nonsmooth constraints, Prikl. Mat. Meh. 40 (1976), no. 6, 1014–1023 (Russian); English transl., J. Appl. Math. Mech. 40 (1976), no. 6, 960–969 (1977). MR 0487669, DOI 10.1016/0021-8928(76)90136-2
- B. Š. Morduhovič, Metric approximations and necessary conditions for optimality for general classes of nonsmooth extremal problems, Dokl. Akad. Nauk SSSR 254 (1980), no. 5, 1072–1076 (Russian). MR 592682
- B. Sh. Mordukhovich, Nonsmooth analysis with nonconvex generalized differentials and conjugate mappings, Dokl. Akad. Nauk BSSR 28 (1984), no. 11, 976–979 (Russian, with English summary). MR 771737
- B. Sh. Mordukhovich, Metody approksimatsiĭ v zadachakh optimizatsii i upravleniya, “Nauka”, Moscow, 1988 (Russian). MR 945143
- Boris S. Mordukhovich, Sensitivity analysis in nonsmooth optimization, Theoretical aspects of industrial design (Wright-Patterson Air Force Base, OH, 1990) SIAM, Philadelphia, PA, 1992, pp. 32–46. MR 1157413
- Boris Mordukhovich, Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions, Trans. Amer. Math. Soc. 340 (1993), no. 1, 1–35. MR 1156300, DOI 10.1090/S0002-9947-1993-1156300-4
- Boris Mordukhovich, Lipschitzian stability of constraint systems and generalized equations, Nonlinear Anal. 22 (1994), no. 2, 173–206. MR 1258955, DOI 10.1016/0362-546X(94)90033-7
- Boris Mordukhovich, Stability theory for parametric generalized equations and variational inequalities via nonsmooth analysis, Trans. Amer. Math. Soc. 343 (1994), no. 2, 609–657. MR 1242786, DOI 10.1090/S0002-9947-1994-1242786-4
- Boris S. Mordukhovich, Generalized differential calculus for nonsmooth and set-valued mappings, J. Math. Anal. Appl. 183 (1994), no. 1, 250–288. MR 1273445, DOI 10.1006/jmaa.1994.1144
- B. S. Mordukhovich and Y. Shao, Differential characterizations of covering, metric regularity, and Lipschitzian properties of multifunctions between Banach spaces, Nonlinear Anal. 25 (1995), 1401–1424.
- B. S. Mordukhovich and Y. Shao, Extremal characterizations of Asplund spaces, Proc. Amer. Math. Soc. 124 (1996), 197–205.
- B. S. Mordukhovich and Y. Shao, On nonconvex subdifferential calculus in Banach spaces, J. of Convex Analysis 2 (1995), 211–228.
- B. S. Mordukhovich and Y. Shao, Stability of set-valued mappings in infinite dimensions: point criteria and applications, SIAM J. Control Optim. (to appear).
- J.-P. Penot, A mean value theorem with small subdifferentials, preprint, February 1995.
- Robert R. Phelps, Convex functions, monotone operators and differentiability, 2nd ed., Lecture Notes in Mathematics, vol. 1364, Springer-Verlag, Berlin, 1993. MR 1238715
- René A. Poliquin, Subgradient monotonicity and convex functions, Nonlinear Anal. 14 (1990), no. 4, 305–317. MR 1040008, DOI 10.1016/0362-546X(90)90167-F
- D. Preiss, Differentiability of Lipschitz functions on Banach spaces, J. Funct. Anal. 91 (1990), no. 2, 312–345. MR 1058975, DOI 10.1016/0022-1236(90)90147-D
- R. T. Rockafellar, Generalized directional derivatives and subgradients of nonconvex functions, Canadian J. Math. 32 (1980), no. 2, 257–280. MR 571922, DOI 10.4153/CJM-1980-020-7
- R. T. Rockafellar, Proximal subgradients, marginal values, and augmented Lagrangians in nonconvex optimization, Math. Oper. Res. 6 (1981), no. 3, 424–436. MR 629642, DOI 10.1287/moor.6.3.424
- R. T. Rockafellar, Extensions of subgradient calculus with applications to optimization, Nonlinear Anal. 9 (1985), no. 7, 665–698. MR 796082, DOI 10.1016/0362-546X(85)90012-4
- R. Tyrrell Rockafellar, Lipschitzian properties of multifunctions, Nonlinear Anal. 9 (1985), no. 8, 867–885. MR 799890, DOI 10.1016/0362-546X(85)90024-0
- R. T. Rockafellar, Maximal monotone relations and the second derivatives of nonsmooth functions, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 3, 167–184 (English, with French summary). MR 797269
- R. T. Rockafellar and R. J-B Wets, Variational analysis, Springer (to appear).
- Nicolae Teleman, Characteristic classes of piecewise differentiable affine connections on smooth manifolds, J. Funct. Anal. 99 (1991), no. 1, 215–222. MR 1120922, DOI 10.1016/0022-1236(91)90060-I
- Lionel Thibault, On subdifferentials of optimal value functions, SIAM J. Control Optim. 29 (1991), no. 5, 1019–1036. MR 1110085, DOI 10.1137/0329056
- L. Thibault, A note on the Zagrodny mean value theorem, preprint, July 1994.
- Jay S. Treiman, Clarke’s gradients and epsilon-subgradients in Banach spaces, Trans. Amer. Math. Soc. 294 (1986), no. 1, 65–78. MR 819935, DOI 10.1090/S0002-9947-1986-0819935-8
- D. E. Ward and J. M. Borwein, Nonsmooth calculus in finite dimensions, SIAM J. Control Optim. 25 (1987), no. 5, 1312–1340. MR 905047, DOI 10.1137/0325072
- J. Warga, Fat homeomorphisms and unbounded derivate containers, J. Math. Anal. Appl. 81 (1981), no. 2, 545–560. MR 622836, DOI 10.1016/0022-247X(81)90081-0
- Dariusz Zagrodny, Approximate mean value theorem for upper subderivatives, Nonlinear Anal. 12 (1988), no. 12, 1413–1428. MR 972409, DOI 10.1016/0362-546X(88)90088-0
Bibliographic Information
- Boris S. Mordukhovich
- Affiliation: Department of Mathematics, Wayne State University, Detroit, Michigan 48202
- MR Author ID: 215154
- ORCID: 0000-0002-3445-2406
- Email: boris@math.wayne.edu
- Yongheng Shao
- Affiliation: Department of Mathematics, Wayne State University, Detroit, Michigan 48202
- Received by editor(s): June 8, 1994
- Received by editor(s) in revised form: April 3, 1995
- Additional Notes: This research was partially supported by the National Science Foundation under grants DMS–9206989 and DMS-9404128
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 1235-1280
- MSC (1991): Primary 49J52; Secondary 46B20, 58C20
- DOI: https://doi.org/10.1090/S0002-9947-96-01543-7
- MathSciNet review: 1333396