Totally real submanifolds in $S^6(1)$ satisfying Chen’s equality
HTML articles powered by AMS MathViewer
- by Franki Dillen and Luc Vrancken
- Trans. Amer. Math. Soc. 348 (1996), 1633-1646
- DOI: https://doi.org/10.1090/S0002-9947-96-01626-1
- PDF | Request permission
Abstract:
In this paper, we study 3-dimensional totally real submanifolds of $S^{6}(1)$. If this submanifold is contained in some 5-dimensional totally geodesic $S^{5}(1)$, then we classify such submanifolds in terms of complex curves in $\mathbb {C}P^{2}(4)$ lifted via the Hopf fibration $S^{5}(1)\to \mathbb {C}P^{2}(4)$. We also show that such submanifolds always satisfy Chen’s equality, i.e. $\delta _{M} = 2$, where $\delta _{M}(p)=\tau (p)-\inf K(p)$ for every $p\in M$. Then we consider 3-dimensional totally real submanifolds which are linearly full in $S^{6}(1)$ and which satisfy Chen’s equality. We classify such submanifolds as tubes of radius $\pi /2$ in the direction of the second normal space over an almost complex curve in $S^{6}(1)$.References
- David E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin-New York, 1976. MR 0467588
- J. Bolton, F. Pedit and L.M. Woodward, Minimal surfaces and the affine Toda field model, J. Reine Angew. Math. 459 (1995), 119–150.
- L. Kantorovitch, The method of successive approximations for functional equations, Acta Math. 71 (1939), 63–97. MR 95, DOI 10.1007/BF02547750
- —, Totally real minimal surfaces with non-circular ellipse of curvature in the nearly Kähler 6-sphere, Proc. London Math. Soc. (to appear).
- J. Bolton and L. M. Woodward, Congruence theorems for harmonic maps from a Riemann surface into $\mathbf C\textrm {P}^n$ and $S^n$, J. London Math. Soc. (2) 45 (1992), no. 2, 363–376. MR 1171562, DOI 10.1112/jlms/s2-45.2.363
- Robert L. Bryant, Submanifolds and special structures on the octonians, J. Differential Geometry 17 (1982), no. 2, 185–232. MR 664494
- Eugenio Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Differential Geometry 1 (1967), 111–125. MR 233294
- Eugenio Calabi, Construction and properties of some $6$-dimensional almost complex manifolds, Trans. Amer. Math. Soc. 87 (1958), 407–438. MR 130698, DOI 10.1090/S0002-9947-1958-0130698-7
- Bang-Yen Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math. (Basel) 60 (1993), no. 6, 568–578. MR 1216703, DOI 10.1007/BF01236084
- B.-Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, Two equivariant totally real immersions into the nearly Kähler 6-sphere and their characterization, Japanese J. Math. (N.S.) 21 (1995), 207–222.
- B.Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, Characterizing a class of totally real submanifolds of $S^{6}(1)$ by their sectional curvatures, Tôhoku Math. J. 47 (1995), 185–198.
- Franki Dillen, Leopold Verstraelen, and Luc Vrancken, On problems of U. Simon concerning minimal submanifolds of the nearly Kaehler $6$-sphere, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 433–438. MR 932322, DOI 10.1090/S0273-0979-1988-15688-1
- F. Dillen, L. Verstraelen, and L. Vrancken, Classification of totally real $3$-dimensional submanifolds of $S^6(1)$ with $K\ge 1/16$, J. Math. Soc. Japan 42 (1990), no. 4, 565–584. MR 1069845, DOI 10.2969/jmsj/04240565
- Franki Dillen and Luc Vrancken, $\textbf {C}$-totally real submanifolds of Sasakian space forms, J. Math. Pures Appl. (9) 69 (1990), no. 1, 85–93. MR 1054125
- Norio Ejiri, Totally real submanifolds in a $6$-sphere, Proc. Amer. Math. Soc. 83 (1981), no. 4, 759–763. MR 630028, DOI 10.1090/S0002-9939-1981-0630028-6
- Norio Ejiri, Equivariant minimal immersions of $S^2$ into $S^{2m}(1)$, Trans. Amer. Math. Soc. 297 (1986), no. 1, 105–124. MR 849470, DOI 10.1090/S0002-9947-1986-0849470-2
- Joseph Erbacher, Reduction of the codimension of an isometric immersion, J. Differential Geometry 5 (1971), 333–340. MR 288701
- Reese Harvey and H. Blaine Lawson Jr., Calibrated geometries, Acta Math. 148 (1982), 47–157. MR 666108, DOI 10.1007/BF02392726
- Katsuya Mashimo, Homogeneous totally real submanifolds of $S^6$, Tsukuba J. Math. 9 (1985), no. 1, 185–202. MR 794670, DOI 10.21099/tkbjm/1496160202
- Taleb Garibe, Two-dimensional surfaces with a constant extrinsic geometry in $E^{5}$, Ukrain. Geom. Sb. 25 (1982), 11–22, 140 (Russian). MR 687195
- Michael Spivak, A comprehensive introduction to differential geometry. Vol. II, M. Spivak, Brandeis Univ., Waltham, Mass., 1970. Published by M. Spivak. MR 0271845
- R. M. W. Wood, Framing the exceptional Lie group $G_{2}$, Topology 15 (1976), no. 4, 303–320. MR 488094, DOI 10.1016/0040-9383(76)90023-9
- Kentaro Yano and Shigeru Ishihara, Invariant submanifolds of an almost contact manifold, K\B{o}dai Math. Sem. Rep. 21 (1969), 350–364. MR 248695
Bibliographic Information
- Franki Dillen
- Affiliation: Katholieke Universiteit Leuven, Departement Wiskunde, Celestijnenlaan 200 B, B-3001 Leuven, Belgium
- Email: Franki.Dillen@wis.kuleuven.ac.be
- Luc Vrancken
- Affiliation: Katholieke Universiteit Leuven, Departement Wiskunde, Celestijnenlaan 200 B, B-3001 Leuven, Belgium
- Email: Luc.Vrancken@wis.kuleuven.ac.be
- Received by editor(s): April 19, 1995
- Additional Notes: The authors are Senior Research Assistants of the National Fund for Scientific Research (Belgium).
The authors would like to thank J. Bolton and L.M. Woodward for helpful discussions. - © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 1633-1646
- MSC (1991): Primary 53B25; Secondary 53A10, 53B35, 53C25, 53C42
- DOI: https://doi.org/10.1090/S0002-9947-96-01626-1
- MathSciNet review: 1355070