Analysis of the Wu metric. I: The case of convex Thullen domains
HTML articles powered by AMS MathViewer
- by C. K. Cheung and Kang-Tae Kim
- Trans. Amer. Math. Soc. 348 (1996), 1429-1457
- DOI: https://doi.org/10.1090/S0002-9947-96-01642-X
- PDF | Request permission
Abstract:
We present an explicit description of the Wu metric on the convex Thullen domains which turns out to be the first natural example of a purely Hermitian, non-Kählerian invariant metric. Also, we show that the Wu metric on these Thullen domains is in fact real analytic everywhere except along a lower dimensional subvariety, and is $C^{1}$ smooth overall. Finally, we show that the holomorphic curvature of the Wu metric on these Thullen domains is strictly negative where the Wu metric is real analytic, and is strictly negative everywhere in the sense of current.References
- L. Ahlfors, An extension of Schwarz’s lemma, Trans. Amer. Math. Soc. 43 (1938), 359–364.
- Kazuo Azukawa and Masaaki Suzuki, The Bergman metric on a Thullen domain, Nagoya Math. J. 89 (1983), 1–11. MR 692340
- E. Bedford and S. I. Pinchuk, Domains in $\textbf {C}^2$ with noncompact groups of holomorphic automorphisms, Mat. Sb. (N.S.) 135(177) (1988), no. 2, 147–157, 271 (Russian); English transl., Math. USSR-Sb. 63 (1989), no. 1, 141–151. MR 937803, DOI 10.1070/SM1989v063n01ABEH003264
- Stefan Bergman, The kernel function and conformal mapping, Second, revised edition, Mathematical Surveys, No. V, American Mathematical Society, Providence, R.I., 1970. MR 0507701
- John S. Bland, The Einstein-Kähler metric on $\{|\textbf {z}|^2+|w|^{2p}<1\}$, Michigan Math. J. 33 (1986), no. 2, 209–220. MR 837579, DOI 10.1307/mmj/1029003350
- Brian E. Blank, Da Shan Fan, David Klein, Steven G. Krantz, Daowei Ma, and Myung-Yull Pang, The Kobayashi metric of a complex ellipsoid in $\textbf {C}^2$, Experiment. Math. 1 (1992), no. 1, 47–55. MR 1181086
- D. Burns Jr., S. Shnider, and R. O. Wells Jr., Deformations of strictly pseudoconvex domains, Invent. Math. 46 (1978), no. 3, 237–253. MR 481119, DOI 10.1007/BF01390277
- Shiu Yuen Cheng and Shing Tung Yau, On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation, Comm. Pure Appl. Math. 33 (1980), no. 4, 507–544. MR 575736, DOI 10.1002/cpa.3160330404
- Marek Jarnicki and Peter Pflug, Invariant distances and metrics in complex analysis, De Gruyter Expositions in Mathematics, vol. 9, Walter de Gruyter & Co., Berlin, 1993. MR 1242120, DOI 10.1515/9783110870312
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- Kang-Tae Kim, Domains in $\textbf {C}^n$ with a piecewise Levi flat boundary which possess a noncompact automorphism group, Math. Ann. 292 (1992), no. 4, 575–586. MR 1157315, DOI 10.1007/BF01444637
- K. Kim and J. Yu, Boundary behavior of the Bergman curvature in the strictly pseudoconvex polyhedral domains, Pacific J. Math., (to appear).
- Paul F. Klembeck, Kähler metrics of negative curvature, the Bergmann metric near the boundary, and the Kobayashi metric on smooth bounded strictly pseudoconvex sets, Indiana Univ. Math. J. 27 (1978), no. 2, 275–282. MR 463506, DOI 10.1512/iumj.1978.27.27020
- Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR 0277770
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0238225
- László Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), no. 4, 427–474 (French, with English summary). MR 660145
- Yung-chen Lu, Holomorphic mappings of complex manifolds, J. Differential Geometry 2 (1968), 299–312. MR 250243
- B. Wong, Characterization of the unit ball in $\textbf {C}^{n}$ by its automorphism group, Invent. Math. 41 (1977), no. 3, 253–257. MR 492401, DOI 10.1007/BF01403050
- H. Wu, A remark on holomorphic sectional curvature, Indiana Univ. Math. J. 22 (1972/73), 1103–1108. MR 315642, DOI 10.1512/iumj.1973.22.22092
- H. Wu, Old and new invariant metrics on complex manifolds, Several complex variables (Stockholm, 1987/1988) Math. Notes, vol. 38, Princeton Univ. Press, Princeton, NJ, 1993, pp. 640–682. MR 1207887
- —, Unpublished Notes.
- Shing Tung Yau, A general Schwarz lemma for Kähler manifolds, Amer. J. Math. 100 (1978), no. 1, 197–203. MR 486659, DOI 10.2307/2373880
Bibliographic Information
- C. K. Cheung
- Affiliation: Department of Mathematics, Boston College, Chestnut Hill, Massachusetts 02167
- Email: cheung/mt@hermes.bc.edu
- Kang-Tae Kim
- Affiliation: Department of Mathematics, Pohang University of Science and Technology, Pohang, 790-784 South Korea
- Email: kimkt@posmath.postech.ac.kr
- Received by editor(s): February 6, 1995
- Additional Notes: Research of the second named author is supported in part by grants from Pohang University of Science and Technology and GARC of Seoul National University.
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 1429-1457
- MSC (1991): Primary 32H20
- DOI: https://doi.org/10.1090/S0002-9947-96-01642-X
- MathSciNet review: 1357392