Simultaneous rational approximation to binomial functions
HTML articles powered by AMS MathViewer
- by Michael A. Bennett
- Trans. Amer. Math. Soc. 348 (1996), 1717-1738
- DOI: https://doi.org/10.1090/S0002-9947-96-01480-8
- PDF | Request permission
Abstract:
We apply Padé approximation techniques to deduce lower bounds for simultaneous rational approximation to one or more algebraic numbers. In particular, we strengthen work of Osgood, Fel′dman and Rickert, proving, for example, that \[ \max \left \{ \left | \sqrt {2} - p_{1}/q \right | , \left | \sqrt {3} - p_{2}/q \right | \right \} > q^{-1.79155} \] for $q > q_{0}$ (where the latter is an effective constant). Some of the Diophantine consequences of such bounds will be discussed, specifically in the direction of solving simultaneous Pell’s equations and norm form equations.References
- A. Baker, Rational approximations to certain algebraic numbers, Proc. London Math. Soc. (3) 14 (1964), 385–398. MR 161825, DOI 10.1112/plms/s3-14.3.385
- A. Baker, Rational approximations to $\root 3\of 2$ and other algebraic numbers, Quart. J. Math. Oxford Ser. (2) 15 (1964), 375–383. MR 171750, DOI 10.1093/qmath/15.1.375
- A. Baker, Simultaneous rational approximations to certain algebraic numbers, Proc. Cambridge Philos. Soc. 63 (1967), 693–702. MR 213303, DOI 10.1017/s0305004100041670
- H. Bateman and A. Erdélyi, Higher Transcendental Functions, McGraw-Hill, 1953, v.1.
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- G. V. Chudnovsky, On the method of Thue-Siegel, Ann. of Math. (2) 117 (1983), no. 2, 325–382. MR 690849, DOI 10.2307/2007080
- Jean Dieudonné, Calcul infinitésimal, Hermann, Paris, 1968 (French). MR 0226971
- David Easton, Effective irrationality measures for certain algebraic numbers, Math. Comp. 46 (1986), no. 174, 613–622. MR 829632, DOI 10.1090/S0025-5718-1986-0829632-4
- N. I. Fel′dman, Estimation of an incomplete linear form in certain algebraic numbers, Mat. Zametki 7 (1970), 569–580 (Russian). MR 268127
- N. I. Fel′dman, Effective bounds for the number of solutions of certain Diophantine equations, Mat. Zametki 8 (1970), 361–371. MR 272709
- Masayoshi Hata, Rational approximations to $\pi$ and some other numbers, Acta Arith. 63 (1993), no. 4, 335–349. MR 1218461, DOI 10.4064/aa-63-4-335-349
- L. Kantorovitch, The method of successive approximations for functional equations, Acta Math. 71 (1939), 63–97. MR 95, DOI 10.1007/BF02547750
- Charles F. Osgood, The diophantine approximation of roots of positive integers, J. Res. Nat. Bur. Standards Sect. B 74B (1970), 241–244. MR 276179
- R. G. E. Pinch, Simultaneous Pellian equations, Math. Proc. Cambridge Philos. Soc. 103 (1988), no. 1, 35–46. MR 913448, DOI 10.1017/S0305004100064598
- John H. Rickert, Simultaneous rational approximations and related Diophantine equations, Math. Proc. Cambridge Philos. Soc. 113 (1993), no. 3, 461–472. MR 1207511, DOI 10.1017/S0305004100076118
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Wolfgang M. Schmidt, Simultaneous approximation to algebraic numbers by rationals, Acta Math. 125 (1970), 189–201. MR 268129, DOI 10.1007/BF02392334
- Nikos Tzanakis, Explicit solution of a class of quartic Thue equations, Acta Arith. 64 (1993), no. 3, 271–283. MR 1225429, DOI 10.4064/aa-64-3-271-283
- Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR 718674, DOI 10.1007/978-1-4684-0133-2
Bibliographic Information
- Michael A. Bennett
- Affiliation: Department of Pure Mathematics, The University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
- Address at time of publication: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- MR Author ID: 339361
- Email: mabennet@math.lsa.umich.edu
- Received by editor(s): June 30, 1994
- Received by editor(s) in revised form: January 31, 1995
- Additional Notes: Research supported by an NSERC Postdoctoral Fellowship
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 1717-1738
- MSC (1991): Primary 11J68, 11J82; Secondary 11D57
- DOI: https://doi.org/10.1090/S0002-9947-96-01480-8
- MathSciNet review: 1321566