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GROUPS QUASI-ISOMETRIC

TO COMPLEX HYPERBOLIC SPACE

RICHARD CHOW

Abstract. We show that any finitely generated group quasi-isometric to com-
plex hyperbolic space is a finite extension of a properly discontinuous, cocom-
pact subgroup of the isometry group.

1. Introduction

Two metric spaces are said to be quasi-isometric if there is a map from one space
to the other whose image intersects every sufficiently large ball and which does not
distort large-scale distances by more than a bounded factor. More precisely, metric
spaces (M,dM ) and (N, dN ) are quasi-isometric if there are positive constants C,
K, and L and a function φ : M → N satisfying:

(1) for all x1, x2 ∈M ,

1

C
dM (x1, x2)−K ≤ dN (φ(x1), φ(x2)) ≤ CdM (x1, x2) +K

(2) for all y ∈ N ,
{x : dN (x, y) ≤ L} ∩ φ(M) 6= ∅.

This definition is not given symmetrically, but it is not hard to see that if M is
quasi-isometric to N , then N is quasi-isometric to M .

There is a natural metric on a finitely generated group, the word metric. The
choice of a generating set for the group is necessary to define this metric, but
different choices of generating sets will lead to quasi-isometric metrics.

Given a space, one would like to know which groups are quasi-isometric to the
space. One class of examples is given by the observation that if a subgroup of
the group of isometries acts properly discontinuously and cocompactly, then this
subgroup is quasi-isometric to the space. One can simply fix a point e in the space
and define φ(g) = g(e) for an element g of the subgroup. Of course, any finite
extension of such a group will also be quasi-isometric to the space. Are these the
only examples possible?

For Rn the answer is yes. By [Gro1], any group quasi-isometric to Rn is a finite
extension of Zn. For real hyperbolic space Hn

R, the answer is also yes. For n > 2,
this follows from the work of Tukia [Tuk], Cannon and Cooper [C-C], and Gromov
[Gro2]. The case of n = 2 follows from the work of Gabai [Gab] or Casson and
Jungreis [C-J] on convergence groups. Similarly, Pansu in [Pan] has shown that the
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answer is also yes for the quaternionic and Cayley hyperbolic spaces. For further
background, see [Ghy1], [Gro2], and [G-P]. Our aim here is to give a positive answer
for the remaining rank one symmetric space, complex hyperbolic space Hn

C.
One point of view is that this question is about the existence side of Mostow

rigidity. Mostow rigidity concerns the possibility of deforming a given lattice in a
group. Here, we are given a lattice in rough form, as a group quasi-isometric to the
associated symmetric space, and ask whether one can realize this rough lattice as
a genuine lattice.

We note that for certain spaces a negative answer is known. That is, there are
groups quasi-isometric to a space but which are not finite extensions of properly
discontinuous, cocompact subgroups of the isometry group. An example is H2

R×R;
see [Rie] or [Ger].

The proofs for all the rank one symmetric spaces involve identifying a group
quasi-isometric to the space with a group of “pseudo-isometries” acting on the
space. This group of pseudo-isometries induces a group of quasiconformal maps on
the boundary of the space. This quasiconformal group is then shown to be either
conjugate via a quasiconformal mapping to a conformal group (in the real and
complex hyperbolic cases) or a conformal group to begin with (in the quaternionic
and Cayley cases). Since conformal mappings are the boundary values of isometries,
this completes the proof.

The boundary of the complex hyperbolic spaces can be viewed as compacti-
fied Heisenberg groups. The main point here is that using results from Koranyi
and Reimann’s recent paper on quasiconformal mappings on the Heisenberg group
[K-R1], we are able to show that Tukia’s proof in the real hyperbolic case carries
over to complex hyperbolic space.

We would like to thank Geoff Mess for suggesting this problem and for help-
ful conversations. We also are grateful to John Garnett and Eleanor Rieffel for
encouragement and helpful conversations, and to the referee for corrections and
suggestions.

2. Preliminaries

2.1. Complex Hyperbolic Space. One can concretely realize n-dimensional
complex hyperbolic space Hn

C as the unit ball in Cn with the Bergman metric.
For a detailed description of the geometry, see [Gol] or [Eps]. The unitary group
SU(n, 1) acts holomorphically and isometrically on Hn

C . The action can be de-
scribed as follows. Endow Cn+1 with the quadratic form

〈z, z〉 = − |z0|2 +
n∑
j=1

|zj|2 .

Elements of SU(n, 1) preserve this form and hence leave the cone

{z ∈ Cn+1 : 〈z, z〉 < 0}
invariant. Under projectivization, this cone can be identified with the unit ball. So
if

wj =
zj
z0
, j = 1, . . . , n,

are nonhomogeneous coordinates, elements of SU(n, 1) will induce a mapping of

{w ∈ Cn : |w| < 1}
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COMPLEX HYPERBOLIC SPACE 1759

to itself. As the isotropy subgroup of 0 is U(n), one can also realize Hn
C as the

symmetric space SU(n, 1)/U(n), where the natural metric agrees with the Bergman
metric up to scale. If the metric is normalized so that the sectional curvature
is “pinched” between −1 and −1/4, the planes corresponding to the exponential
images of complex lines in the tangent space at any point are totally geodesic and
have curvature −1. They are isometric embeddings of H2

R. The exponential images
of planes in the totally real subspace have curvature −1/4.

The full isometry group of Hn
C is generated by SU(n, 1) and the anti-holomorphic

mapping (w1, ...wn)→ (w1, ...wn).
The metric on Hn

C leads naturally to a “conformal” structure on its boundary
∂Hn

C = S2n−1 in much the same way as the real hyperbolic metric on the unit
ball in Rn leads to the usual Euclidean conformal structure on its boundary, Sn−1.
See [G-P] for a sampling of various ways to derive this structure. Elements of the
isometry group of Hn

C extend to be conformal maps with respect to this structure,
and conformal mappings all come from boundary mappings of isometries.

To describe concretely this conformal structure, we will work in coordinates. Via
a generalized stereographic projection, ∂Hn

C \{any point} can be identified with the
Heisenberg group. One first maps the unit ball in Cn

{(z1, . . . , zn−1, τ) ∈ Cn : |(z1, . . . , zn−1)|2 + |τ |2 < 1}
biholomorphically to the Siegel domain

{(z1, . . . , zn−1, τ) ∈ Cn : Im τ > |(z1, . . . , zn−1)|2}.
Then ∂Hn

C \{some point} will correspond to the boundary of the Siegel domain

{Im τ = |(z1, . . . , zn−1)|2}.
The boundary of the Siegel domain can then be mapped to R2n−1 by sending

(z1, . . . , zn−1, τ) = (x1 + iy1, . . . , xn−1 + iyn−1, τ)

to

(x1, . . . , xn−1, y1, . . . , yn−1,Re τ).

See [K-R2], section C, for the explicit formulae in the case of ∂H2
C where the point

removed is (0, 1).

2.2. The Heisenberg Group. The Heisenberg group Hn is a real (2n + 1) di-
mensional Lie group. We model Hn on R2n+1 with coordinates (x, y, t), where
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn and t ∈ R. Alternatively, we can write
(z, t), where z = (z1, ..., zn) = (x1 + iy1, . . . , xn + iyn). The group multiplication is
given by

(x, y, t)(x′, y′, t′) = (x + x′, y + y′, t+ t′ − 2x · y′ + 2y · x′).
The invariant Haar measure on Hn is the usual Lebesque measure |·| on R2n+1. A
basis for the Lie algebra of left-invariant vector fields is given by

Xj =
∂

∂xj
+ 2yj

∂

∂t
, j = 1, . . . , n,

Yj =
∂

∂yj
+ 2xj

∂

∂t
, j = 1, . . . , n,

T =
∂

∂t
.
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The only non-trivial commutator relations are [Xj , Yj ] = −4T, j = 1, . . . , n.
A norm on Hn is given by

|(x, y, t)| = ((|x|2 + |y|2)2 + t2)1/4,

thus giving the left-invariant distance function

d(p, q) =
∣∣p−1q

∣∣ for p, q ∈ Hn.

We use this distance function to define quasiconformality on Hn.

2.3. Quasiconformal Maps on the Heisenberg Group.

Definition. A homeomorphism f : U → V between domains in the Heisenberg
group is quasiconformal if

D(p) = lim sup
r→0

maxd(p,q)=r d(f(p), f(q))

mind(p,q)=r d(f(p), f(q))

is uniformly bounded. Furthermore, f is K-quasiconformal if D(p) ≤ K for almost
every point p ∈ Hn.

A mapping of ∂Hn
C to itself is K-quasiconformal if its restriction to any co-

ordinate Hn−1 is K-quasiconformal. Conformal mappings by definition are 1-
quasiconformal mappings. Koranyi and Reimann [K-R2] have shown that isome-
tries of Hn

C act as conformal mappings on ∂Hn
C, and Pansu [Pan], Section 11.5, has

shown that all conformal mappings on ∂Hn
C are boundary values of isometries on

Hn
C.
All the conformal mappings on the Heisenberg group are generated by the fol-

lowing groups. They all come from isometries of complex hyperbolic space.
(1) The Heisenberg group itelf: Hn acts on itelf by left translation as a group of
isometries and hence as a group of conformal mappings.
(2) A one-dimensional family of dilations around the origin:

as : (x, y, t) 7→ (e−sx, e−sy, e−2st), s ∈ R.

(3) Rotations around the origin:

U(n) ∈M : (z, t) 7→ (Mz, t).

(4) The inversion (z, t) 7→ (−z̄,−t), corresponding to an anti-holomorphic isometry
of Hn

C .
The vector fields {Xj} and {Yj} span a hyperplane, called the horizontal sub-

space, on the tangent space at each point of Hn and provide Hn with a contact
structure. Conformal mappings are contact transformations with respect to this
structure. See [K-R2].

2.4. Differentiability of quasiconformal mappings. Pansu has proven the fun-
damental theorem that quasiconformal mappings are differentiable almost every-
where, where the definition of differentiability is adapted to the group structure on
the Heisenberg group. Recall that a map f : Rn → Rn which fixes the origin is
differentiable at the origin if

lim
a→0

f(ax)

a
= Mx
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for a linear transformation M . In the Heisenberg group setting, if f fixes the origin,
we say that f is P-differentiable at the origin in Hn if the mappings

a−1
s ◦ f ◦ as

converge locally uniformly as s → 0 to a homomorphism of the Heisenberg group
which preserves the horizontal space. P-differentiability at other points is defined
via left translation. One can think of P-differentiability as meaning: (1) f is differ-
entiable in the Euclidean sense in horizontal directions and Df takes the horizontal
space to the horizontal space, and (2) f is differentiable in the T direction, where
it behaves like u→

√
u. See [G-P] and [K-R1].

The anisotropic nature of the metric on Hn
C forces this “contact-map” nature of

quasiconformal mappings. Indeed, even within the horizontal space, the derivative
of a quasiconformal map is not arbitrary, owing to the difference in going in a
complex line direction and going in a direction which is not a complex line. The
derivative on the horizontal space must essentially be a symplectic matrix, those
matrices preserving complex lines.

To be more precise, preserving the horizontal space forces the derivative f∗ to
be a grade-preserving Lie algebra homomorphism. See [K-R1], Chapter 2. The
grading of the Lie algebra g is given by

g = h⊕ z,

where h is the horizontal subspace and z is the span of T , the center of the Lie
algebra. At almost every point this homomorphism is actually an automorphism.
In the coordinates {X1, . . . , Xn, Y1, . . . , Yn, T} an orientation-preserving automor-
phism in terms of a matrix in GL(2n+ 1,R) can be given as( √

λS
λ

)
,(E1)

where λ > 0 and S is an element of the symplectic group Sp(n,R), defined as those

2n× 2n real matrices A for which AtJA = J where J =

(
I

−I

)
.

By definition, an orientation preserving automorphism is one which preserves
the direction of T , i.e. λ is positive. For orientation-reversing mappings,

√
λ is

replaced by

√
−λ
(
−I

I

)
,(E2)

where I is the identity matrix on Rn.

2.5. Conformal structures. Let S2n denote the symmetric space

SL(2n,R)/SO(2n).

One can identify S2n with the positive (symmetric, positive definite) 2n× 2n real
matrices of determinant one via the mapping M 7→M tM . One can think of S2n as
the space of ellipsoids in 2n-dimensional space or of positive-definite bilinear forms,
both up to scale. S2n is a Riemannian manifold of nonpositive curvature on which
SL(2n,R) acts isometrically by X [A] = XtAX . The distance between the identity
matrix I and a positive matrix A is given by

K(A) = d(I, A) = ((log λ1)2 + · · ·+ (logλn)2)1/2,
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where λ1, . . . , λn are the eigenvalues of A. Other distances are given by the invari-
ance under SL(2n,R).

The symmetric space S?n = Sp(n,R)/SU(n) of positive symplectic matrices nat-
urally sits inside S2n as a totally geodesic subspace. See [Ter] or [Maa].

We define a conformal structure µ on U ⊂ ∂Hn
C to be an assignment to almost

every x ∈ U of an element of S?n−1 such that K(µ(x)) is essentially bounded. A
conformal structure is actually an almost everywhere defined field of bilinear forms
on the horizontal subspace of the tangent space at each point. To identify an
element of S?n−1 with a bilinear form, we need to work in particular Heisenberg
coordinates, say on ∂Hn

C \ (0, . . . , 0, 1). Hence, if (0, . . . , 0, 1) ∈ U , we prefer to
let µ(0, . . . , 0, 1) remain undefined.

A quasiconformal mapping of ∂Hn
C is conformal in µ if for a.e. x ∈ ∂Hn

C ,

µ(x) = f ′(x)
∣∣
h
[µ(f(x))].

According to the previous section, the P-derivative of f at x is, in the orientation-
preserving case, a positive multiple of a matrix in Sp(n,R) when restricted to the
horizontal subspace. By an abuse of notation, we let f ′(x)

∣∣
h

denote this matrix.
In the orientation-reversing case, the P-derivative of f is a positive multiple of(
−I

I

)
· A, where A ∈ Sp(n,R). The matrix

(
−I

I

)
corresponds to the

mapping (z1, . . . , zn) 7→ −(z1, . . . , zn). In this case we once again normalize and
ignore the positive factor.

We write µg(x) = g′(x)
∣∣
h
[µ(x)]. Hence µfg(x) = g′(x)

∣∣
h
[µf (g(x))].

If f : U → ∂Hn
C is quasiconformal and µ is a conformal structure on U , then

define the image f∗µ by

f∗µ(f(x)) = (f ′(x)
∣∣
h
)−1[µ(x)].

Note that

(gf)∗µ = g∗f∗µ,

when f : U → U ′ and g : U ′ → U ′′ and µ is a conformal structure on U .

3. Quasiconformal groups on the Heisenberg group

A quasiconformal group of ∂Hn
C is a group of quasiconformal mappings of ∂Hn

C to
itself such that every element is K-quasiconformal for some fixed K.

Tukia [Tuk] has shown that under certain conditions quasiconformal groups on
Rn are conjugate to a conformal group via a quasiconformal mapping. In this
section our aim is to show that Tukia’s theorems also hold in the Heisenberg group
setting. The proofs of the theorems follow Tukia’s general outline.

3.1. Lemmas on quasiconformal mappings. Let f : D → D′ be a homeomor-
phism of domains in Rn , and for each open ball B1 ⊂ D with center x, let B2

denote the largest open ball in f(B1) with center f(x). We say f has the uniform
density property if there exists a continuous φ : [0,∞)→ [0,∞) with φ(0) = 0 such
that, for all x ∈ D and sufficiently small B1 with center at x,

m(f(E) ∩B2)

m(B2)
≤ φ

(m(E ∩B1)

m(B1)

)
for all measurable E ⊂ D.
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As in the Euclidean case, the uniform density property for quasiconformal map-
pings on the Heisenberg group is a consequence of a reverse Holder’s inequality for
the Jacobian. See [G-K].

Lemma 3.1.1. Say f : Hn → Hn is K-quasiconformal. Then f has the uniform
density property with φ(t) = bta, where a and b are positive constants, depending
only on K and n.

Proof. The proof is the same as in [G-K], since Koranyi and Reimann have proven
that Gehring’s Lp-integrability theorem for quasiconformal mappings on Rn also
holds on Hn . For the reader’s convenience, we reproduce the proof.

For x ∈ Hn, let Jf (x) denote the absolute value of the Jacobian of f at x, defined
almost everywhere. By Theorem G in [K-R1], there exists a constant C, depending
only on K and n, such that( 1

|B|

∫
B

J
p

2n+2

f dv
) 2n+2

p ≤ C 1

|B|

∫
B

Jf dv

for p ∈ [2n+ 2, 2n+ 2 + ε), some ε, and for all balls B in Hn .
Hence,

1

|B|

∫
B

J
p

2n+2

f dv ≤ C
p

2n+2

( |f(B)|
|B|

) p
2n+2

.

Fix p = 2n+ 2 + ε/2. For E measurable,

|f(E) ∩B2| ≤
∫
E∩B1

Jf dv

≤
(∫

B1

J
p

2n+2

f dv
) 2n+2

p |E ∩B1|1−
2n+2
p

≤ C |B1|
2n+2
p
|f(B1)|
|B1|

|E ∩B1|1−
2n+2
p .

Hence,

|f(E) ∩B2|
|f(B1)| ≤ C

( |E ∩B1|
|B1|

)1− 2n+2
p

.

Since |f(B1)| ≤ C′ |B2| (see [K-R1], Proposition 12),

|f(E) ∩B2|
|B2|

≤ b
( |E ∩B1|
|B1|

)a
.

The following two lemmas are due to Tukia in the Rn setting. His proofs go
through with only minor modifications.

Lemma 3.1.2. Say F is a compact family of K-quasiconformal mappings from
∂Hn

C to ∂Hn
C . Then there are positive constants a, a′, b, and b′, depending on K

and F , such that

b′m(E)a
′ ≤ m(f(E)) ≤ bm(E)a

for all measurable E and f ∈ F . Here m is the spherical measure.

Proof. It suffices to prove the right-hand inequality. We can assume the diameters
of E and f(E) are bounded by 1. Hence, we can assume E and f(E) are subsets of
Hn−1 and use Euclidean measure |·|, comparable to spherical measure on bounded
sets.
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Let r > 0. Let r′′ = r′′(x, r, f) > 0 be the biggest number such thatB(f(x), r′′) ⊂
f(B(x, r)). Let r′ = r′(x, r, f) > 0 be the biggest number such that f(B(x, r′)) ⊂
B(f(x), r′′). Obviously, r′ and r′′ are continuous functions of x, r, and f . By
the uniform density property, we can assume r is so small that if E ⊂ B(x, r′) is
measurable,

|f(E)|
|B(f(x), r′′)| ≤ b

( |E|
|B(x, r)|

)a
.

By compactness of F and because x ranges over the compact set ∂Hn
C , r′ ≥

r′0(F) ≥ 0 and r′′ ≤ r′′0 (F) ≤ ∞.
So if diam(E) < r′0,

|f(E)| ≤ |B(r′′0 |
|B(r)|a b |E|

a

for f ∈ F .

Lemma 3.1.3. Say {fi : ∂Hn
C → ∂Hn

C} is a family of K-quasiconformal mappings
such that fi converges uniformly to f : ∂Hn

C → ∂Hn
C. Say that for any ε > 0,

m({x : K(fi(x)) ≥ 1 + ε})→ 0 as i→∞, where m is the spherical measure. Then
f is conformal.

Proof. Note that Pansu’s proof ([Pan], pp. 44-46), that 1-quasiconformal mappings
on ∂Hn

C come from isometries of Hn
C relies only on the fact that 1-quasiconformal

mappings preserve capacities. Hence, we need only show f preserves capacities.
Recall that a ring in ∂Hn

C is an open set with two complementary components.
A ring on Hn is, via stereographic projection, an open set with two complementary
components, one of which contains∞. The capacity of a ringR with complementary
components C0 and C1 is defined by:

C(R) = inf
u

∫
Hn
|∇u|2n+2

dx,

where u ranges over all real-valued smooth functions on Hn with u|C0 = 0 and
u|C1 = 1, the so-called admissible functions. The expression

∇u =
n∑
j=1

((Xju)Xj + (Yju)Yj)

is called the horizontal gradient of u, and

|∇u|2 =
n∑
j=1

(|Xju|2 + |Yju|2).

Let A be a ring in Hn with complementary components C0 and C1. Set, for
r > 0,

A′r = {z ∈ f(A) : B(z, r) ⊂ f(A)}.
Then fi(A) ⊃ A′r for i sufficiently large (depending on r).

Choose ε > 0. Let u′r be admissible for A′r, so that∫
A′r

|u′r|
2n+2

dm ≤ C(A′r) + ε.

One can assume u′r is smooth and is 0 on a neighborhood of C0 and 1 on a neigh-
borhood of C1 by the proof of Proposition 11 in [K-R1]. Extend u′r to Hn by
continuity and being constant on Hn \A′r.
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Then clearly ∫
A′r

|∇u′r|
2n+2

dm =

∫
A′
|∇u′r|

2n+2
dm

for A′ ⊃ A′r.
Let ui = u′r ◦ fi, admissible for f−1

i (A′r) and hence admissible for A.
Now, the inequality

|∇ui|2n+2 ≤ K2(fi, x)Jfi |∇u′r(f(x))|2n+2

follows from the chain rule. See [K-R1], p. 58.
Set Ei = {x ∈ A : K2(fi, x) ≥ 1 + ε}.
Then

C(A) ≤
∫
A

|∇u′r|
2n+2

dm

≤
∫
A

K2(fi, x)Jfi(x) |∇u′r(f(x))|2n+2
dm

≤ (1 + ε)2

∫
fi(A)

|∇u′r|
2n+2

dm+K2

∫
fi(Ei)

|∇u′r|
2n+2

dm.

Since |Ei| → 0 as i → ∞, Lemma 3.1.2 implies |fi(Ei)| → 0 as i → ∞. Hence
the second term approaches 0 as i→∞.

Then,
C(A) ≤ (1 + ε)2(C(A′r) + ε).

So C(A) ≤ C(A′r) for small r. We claim that C(A′r) → C(f(A)). Indeed, for
any δ one can choose a smooth function v, compactly supported in f(A), such that∫

f(A)

|∇v|2n+2
dm ≤ C(f(A)) + δ.

But then, for small enough r, v is also admissible for C(A′r) and∫
f(A)

|∇v|2n+2 dm =

∫
A′r

|∇v|2n+2 dm

Since ∫
A′r

|∇v|2n+2
dm ≥ C(A′r) ≥ C(f(A)) ≥

∫
f(A)

|∇v|2n+2
dm+ δ

and δ is arbitrary, C(A) ≤ C(f(A)).
Since the assumptions of the lemma also hold for f−1, C(A) = C(f(A)). Hence,

capacities are preserved under f .

3.2. Invariant conformal structures.

Theorem 1. Let G be a countable quasiconformal group on ∂Hn
C . Then there

exists a conformal structure µ under which every element of G is conformal.

Proof. Hn has a measurable, G-invariant subset U of full measure such that every
g ∈ G has non-zero P-derivative at all x ∈ U .

Set Mx = {µg(x) : g ∈ G} for all x ∈ U . Then

g′[Mg(x)] = {g′(x)[µf (g(x))] : f ∈ G} = {µgf (x) : f ∈ G} = Mx.

Recall Lemma E in [Tuk]: Let N be a simply-connected, complete Riemannian
manifold of nonpositive curvature. Suppose X ⊂ N is non-empty and bounded.
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Then there is a unique disk with center PX which has the smallest radius of any
disk containing X . Note that the phrase “negative curvature” in Tukia’s paper
really means nonpositive curvature.

We apply this lemma to S?n, which is complete and of negative curvature. Set
µ(x) = PMx . Since the Mx as sets are invariant under G, the PMx are also.

We need only show µ is measurable. Enumerate G = {g0, g1, . . . }, and let
M(x, j) = {µgi(x) : i ≤ j} and µj(x) = PM(x,j). Now, X 7→ PX is continuous
in the Hausdorff metric. This implies µj is measurable. Since µj(x) converges to
µ(x), µ is measurable.

3.3. Conjugating the group. Let T = {(u, v, w) | u, v, w ∈ ∂Hn
C , distinct}.

There is a natural projection p from T to Hn
C , namely the orthogonal projection of

w to the geodesic joining u and v. We say x is a radial point for the quasiconformal
group G if there are gi ∈ G such that for any z ∈ T and geodesic L ⊂ Hn

C with
endpoint x,

zi = p(gi(z))→ x

in Hn
C and

d(zi, L) ≤M,(?)

for some M .
A map f : U → X , where U ⊂ ∂Hn

C is open and X is a metric space with
metric d, is said to be approximately continuous at x ∈ U if for all ε > 0

m({y ∈ B(x, r) ∩ U : d(f(x), f(y)) ≤ ε})/m(B(x, r))→ 1

as r → 0. Here, B(x, r) is the open ball in the spherical metric with radius r and
center x, and m is the spherical measure. If X is separable and f is measurable,
then f is approximately continuous at almost every point. See [Fed].

Theorem 2. Let G be a quasiconformal group of ∂Hn
C and µ be a G-invariant

conformal structure of ∂Hn
C . Say µ is approximately continuous at x, a radial

point of G. Then there exists a quasiconformal mapping f of ∂Hn
C such that fGf−1

is a conformal group of ∂Hn
C .

Proof. Let us take as our model for Hn
C the unit ball in Cn. The boundary ∂Hn

C can
then be identified with the unit sphere. Without loss, we assume x = (1, 0, . . . , 0).
Pick gi ∈ G and z = (z1, z2, z3) ∈ T which satisfy (?) for M with respect to
the line L with endpoints (1, 0, . . . , 0) and (−1, 0, . . . , 0). Now we use Heisenberg
coordinates Hn−1 on ∂Hn

C \ (−1, 0, . . . , 0), for which (1, 0, . . . , 0) will correspond
to the identity 0 in the Heisenberg group.

Choose a smooth quasiconformal mapping α ofHn−1 fixing 0 such that α∗µ(0) =
I. Such an α exists because, for instance, one can take a linear map of the form
(E1) or (E2) in Section 2.1.

Pick si > 0 such that

d((0, . . . , 0), asi(pgi(z))) = d((0, . . . , 0), p(asigi(z))) ≤M,(1)

where d(·, ·) is the metric on Hn
C . Here, by an abuse of notation, asi means the

isometry of Hn
C which induces the asi defined in Section 2.3. Such si exist since in

Hn
C the asi fix the geodesic L and act as translations along L.
Define maps fi : ∂Hn

C → ∂Hn
C by fi(u) = α(asi(gi(u))).

Along some subsequence asigi → ḡ, ḡ quasiconformal, uniformly in the spherical
metric. Indeed, first pick a subsequence so that asigi(z1), asigi(z2), and asigi(z3)
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converge. They must converge to distinct points, else (1) would be violated. Then
apply [K-R1], p.67, Theorem F.

So fi → f = αḡ uniformly in the spherical metric. We need only show fgf−1 is
conformal on ∂Hn

C for all g ∈ G. Pick g ∈ G. Let g′ = fgf−1 and

g′i = figf
−1
i = (asiα)gigg

−1
i (asiα)−1.

Consider the conformal structure µi = (fi)∗µ of ∂Hn
C . Each g′i is conformal in

this structure, so

µi(u) = (fi)∗µ(u) = (asiα)∗(gi)∗µ(u) = (asiα)∗µ(u) = α∗µ(a−1
si (u)),

since a′si
∣∣
h

at any point is the identity matrix.
Since α∗µ(0) = I and α∗µ is approximately continuous at 0, given any ε > 0,

there are sets Ai such that m(Ai) → 0 as i → ∞ and K(µi(x)) ≤ 1 + ε for
x ∈ ∂Hn

C \Ai.
The maps g′i and g′ are a compact family of quasiconformal mappings. Hence,

by Lemma 3.1.2 there exists Bi ⊂ ∂Hn
C such that m(Bi) → 0 as i → ∞ and

K(µi(x)) ≤ 1 + ε and K(µi(g
′
i(x))) ≤ 1 + ε for x ∈ ∂Hn

C \Bi.
Since g′i is conformal in µi,

K(g′i(x)
∣∣
h
) ≤ K(µi(x))K(µi(g

′
i(x)))

≤ (1 + ε)2 for x ∈ ∂Hn
C \Bi.

Hence, K(g′i(x)) → 1 in measure. Lemma 3.1.3 then implies g′ = limi→∞ g′i is
conformal.

4. Main Theorem

Theorem 3. A finitely generated group G quasi-isometric to Hn
C can be realized as

the finite extension of a properly discontinuous, cocompact subgroup of the isometry
group of Hn

C.

Proof. The hard work has all been done. Now we put together all the pieces. G
acts on itself freely by left translation as a group of isometries. Thus, each element
of G gives a quasi-isometry of Hn

C to itself.
One of the steps in the proof of Mostow’s basic theorem states that a quasi-

isometry between Hn
C and itself induces a quasiconformal mapping of ∂Hn

C to
itself. See [G-P] for a proof. The original proof due to Mostow [Mos] is in the
case where the quasi-isometry is actually a bijective function. However, his proof
easily generalizes to our situation. The main point is that an M -neighborhood of
a geodesic must “map” to an M ′-neighborhood of another geodesic.

Hence, we have mapped G to a group of quasiconformal mappings on ∂Hn
C . The

kernel of this mapping is finite. To see this, take two geodesics in Hn
C intersecting

at the point e corresponding to the identity of G. If g ∈ G induces the identity
on ∂Hn

C , these two geodesics will stay roughly fixed as sets, and hence e cannot
be moved very far by g because it must stay near the intersection point of the two
geodesics. But there are only a finite number of group elements mapped near e,
and G acts freely on itself.

Since we are only concerned with G up to finite extension, we can identify G
with this quasiconformal group on ∂Hn

C .

Lemma 4.0.1. Every point of ∂Hn
C is radial with respect to G.
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Proof of Lemma. Given any x ∈ ∂Hn
C and any geodesic L ⊂ Hn

C with endpoint x,
we can find {gi} ∈ G such that gi(e) converges to x and d(gi(e), L) ≤M , where e is
the point in Hn

C corresponding to the identity of G and M is a constant depending
on the quasi-isometry constants. Take a triple (u, v, w) = t ∈ T such that p(t) = e.
Now there is a constant C such that

d(pgi(t), gip(t)) ≤ C.
To see this, take an isometry h of Hn

C such that hgi(t) = t. Then

d(gip(t), pgi(t)) = d(hgip(t), p(t)).

hgi is a quasi-isometry which fixes u,v, and w. Hence, it is easy to see it cannot
move their projection very far. For a precise argument, see [Thu], Lemma 5.9.4.
Then p(gi(t)) converges to x and d(p(gi(e)), L) ≤M ′.

Hence, Theorem 2 implies that G is conjugate to a group of isometries of Hn
C via

a quasiconformal mapping f . We note that f can be extended to a quasi-isometry
of Hn

C . See [G-P], Theorem 3.11.C1. So we may assume the original action of G on
∂Hn

C is conformal, since if φ is the original quasi-isometry between G and Hn
C , we

may replace it by f ◦ φ. Hence, we have identified G with a group of isometries of
Hn

C ; we need only show this group acts properly discontinuously and cocompactly.
But this metric-space argument is contained in Cannon and Cooper’s paper [C-C]
as steps (4) and (5) in the proof of their main theorem. Paraphrasing them, the
argument succeeds because the action of G on itself is cocompact and properly
discontinuous, and Hn

C and G are equivalent, up to the factors that matter in the
definitions of proper discontinuity and cocompactness.

Richard Schwartz [Sch] has proven that any group quasi-isometric to a non-
uniform rank one lattice is virtually a rank one lattice. Schwartz’s work does not
cover the case of SL(2,R), but this case was known before, as here non-uniform
lattices are virtually free groups. Any group quasi-isometric to a free group is
virtually a free group; see for example [Ghy2]. He points out that since we have
completed the classification of groups quasi-isometric to uniform rank one lattices,
we have the following:

Corollary. Any finitely generated group quasi-isometric to a rank one lattice is
virtually a rank one lattice.
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