The Bergman kernel function of some Reinhardt domains
HTML articles powered by AMS MathViewer
- by Sheng Gong and Xuean Zheng
- Trans. Amer. Math. Soc. 348 (1996), 1771-1803
- DOI: https://doi.org/10.1090/S0002-9947-96-01526-7
- PDF | Request permission
Abstract:
The boundary behavior of the Bergman Kernel function of some Reinhardt domains is studied. Upper and lower bounds for the Bergman kernel function are found at the diagonal points $(z, \bar {z})$. Let $D$ be the Reinhardt domain \[ D = \left \{ z \in \mathbf {C}^n | \|z\|_\alpha =\sum _{j=1}^n|z_j|^{2/\alpha _j}<1 \right \} \] where $\alpha _j>0$, $j=1,2,\dots , n$; and let $K(z,\bar w)$ be the Bergman kernel function of $D$. Then there exist two positive constants $m$ and $M$ and a function $F$ such that \[ mF(z, \bar {z}) \le K(z, \bar {z})\le MF(z, \bar {z}) \] holds for every $z\in D$. Here \[ F(z, \bar {z})=(-r(z))^{-n-1} \prod _{j=1}^n (-r(z)+|z_j|^{2/\alpha _j})^{1-\alpha _j} \] and $r(z)=\|z\|_\alpha -1$ is the defining function for $D$. The constants $m$ and $M$ depend only on $\alpha =(\alpha _1,\dots , \alpha _n)$ and $n$, not on $z$.References
- B. Bergman, Über die Kernfunktion eines Bereiches und ihr Verhalten am Rande, J. Reine Angew. Math. 169 (1933), 1–42.
- L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegő, Journées: Équations aux Dérivées Partielles de Rennes (1975), Astérisque, No. 34-35, Soc. Math. France, Paris, 1976, pp. 123–164 (French). MR 0590106
- David W. Catlin, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), no. 3, 429–466. MR 978601, DOI 10.1007/BF01215657
- John P. D’Angelo, A note on the Bergman kernel, Duke Math. J. 45 (1978), no. 2, 259–265. MR 473231
- John P. D’Angelo, An explicit computation of the Bergman kernel function, J. Geom. Anal. 4 (1994), no. 1, 23–34. MR 1274136, DOI 10.1007/BF02921591
- Charles Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1–65. MR 350069, DOI 10.1007/BF01406845
- Jeffery D. McNeal, Boundary behavior of the Bergman kernel function in $\textbf {C}^2$, Duke Math. J. 58 (1989), no. 2, 499–512. MR 1016431, DOI 10.1215/S0012-7094-89-05822-5
- Jeffery D. McNeal, Local geometry of decoupled pseudoconvex domains, Complex analysis (Wuppertal, 1991) Aspects Math., E17, Friedr. Vieweg, Braunschweig, 1991, pp. 223–230. MR 1122183
- A. Nagel, J.-P. Rosay, E. M. Stein, and S. Wainger, Estimates for the Bergman and Szegő kernels in $\textbf {C}^2$, Ann. of Math. (2) 129 (1989), no. 1, 113–149. MR 979602, DOI 10.2307/1971487
Bibliographic Information
- Sheng Gong
- Affiliation: Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China; Department of Mathematics, University of California, San Diego, La Jolla, California 92093
- Xuean Zheng
- Affiliation: Department of Mathematics, Anhui University, Hefei, Anhui, 230039, People’s Republic of China
- Received by editor(s): October 13, 1994
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 1771-1803
- MSC (1991): Primary 32H10
- DOI: https://doi.org/10.1090/S0002-9947-96-01526-7
- MathSciNet review: 1329534