Prox-regular functions in variational analysis
HTML articles powered by AMS MathViewer
- by R. A. Poliquin and R. T. Rockafellar
- Trans. Amer. Math. Soc. 348 (1996), 1805-1838
- DOI: https://doi.org/10.1090/S0002-9947-96-01544-9
- PDF | Request permission
Abstract:
The class of prox-regular functions covers all l.s.c., proper, convex functions, lower-$\mathcal {C}^{2}$ functions and strongly amenable functions, hence a large core of functions of interest in variational analysis and optimization. The subgradient mappings associated with prox-regular functions have unusually rich properties, which are brought to light here through the study of the associated Moreau envelope functions and proximal mappings. Connections are made between second-order epi-derivatives of the functions and proto-derivatives of their subdifferentials. Conditions are identified under which the Moreau envelope functions are convex or strongly convex, even if the given functions are not.References
- H. Attouch, Variational convergence for functions and operators, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 773850
- H. Attouch and R. J.-B. Wets, Epigraphical analysis, Ann. Inst. H. Poincaré C Anal. Non Linéaire 6 (1989), no. suppl., 73–100. Analyse non linéaire (Perpignan, 1987). MR 1019109, DOI 10.1016/S0294-1449(17)30036-7
- J. V. Burke and R. A. Poliquin, Optimality conditions for non-finite valued convex composite functions, Math. Programming 57 (1992), no. 1, Ser. B, 103–120. MR 1167409, DOI 10.1007/BF01581075
- Frank H. Clarke, Optimization and nonsmooth analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983. A Wiley-Interscience Publication. MR 709590
- Frank H. Clarke, Methods of dynamic and nonsmooth optimization, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 57, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989. MR 1085948, DOI 10.1137/1.9781611970142
- F. H. Clarke, R. J. Stern and P. R. Wolenski, Proximal smoothness and the lower-$\mathbb {C} ^{2}$ property, preprint, 1994.
- Roberto Cominetti, On pseudo-differentiability, Trans. Amer. Math. Soc. 324 (1991), no. 2, 843–865. MR 992605, DOI 10.1090/S0002-9947-1991-0992605-3
- Chi Ngoc Do, Generalized second-order derivatives of convex functions in reflexive Banach spaces, Trans. Amer. Math. Soc. 334 (1992), no. 1, 281–301. MR 1088019, DOI 10.1090/S0002-9947-1992-1088019-1
- Alexander Ioffe, Variational analysis of a composite function: a formula for the lower second order epi-derivative, J. Math. Anal. Appl. 160 (1991), no. 2, 379–405. MR 1126124, DOI 10.1016/0022-247X(91)90312-N
- L. Kantorovitch, The method of successive approximations for functional equations, Acta Math. 71 (1939), 63–97. MR 95, DOI 10.1007/BF02547750
- A. Levy and R. T. Rockafellar, Variational conditions and the proto-differentiation of partial subgradient mappings, Nonlinear Anal. Th. Meth. Appl. (to appear).
- René A. Poliquin, Subgradient monotonicity and convex functions, Nonlinear Anal. 14 (1990), no. 4, 305–317. MR 1040008, DOI 10.1016/0362-546X(90)90167-F
- René A. Poliquin, Proto-differentiation of subgradient set-valued mappings, Canad. J. Math. 42 (1990), no. 3, 520–532. MR 1062743, DOI 10.4153/CJM-1990-027-2
- René A. Poliquin, Integration of subdifferentials of nonconvex functions, Nonlinear Anal. 17 (1991), no. 4, 385–398. MR 1123210, DOI 10.1016/0362-546X(91)90078-F
- René A. Poliquin, An extension of Attouch’s theorem and its application to second-order epi-differentiation of convexly composite functions, Trans. Amer. Math. Soc. 332 (1992), no. 2, 861–874. MR 1145732, DOI 10.1090/S0002-9947-1992-1145732-5
- R. A. Poliquin and R. T. Rockafellar, Amenable functions in optimization, Nonsmooth optimization: methods and applications (Erice, 1991) Gordon and Breach, Montreux, 1992, pp. 338–353. MR 1263511
- R. A. Poliquin and R. T. Rockafellar, A calculus of epi-derivatives applicable to optimization, Canad. J. Math. 45 (1993), no. 4, 879–896. MR 1227665, DOI 10.4153/CJM-1993-050-7
- R. A. Poliquin and R. T. Rockafellar, Proto-derivative formulas for basic subgradient mappings in mathematical programming, Set-Valued Anal. 2 (1994), no. 1-2, 275–290. Set convergence in nonlinear analysis and optimization. MR 1285834, DOI 10.1007/BF01027106
- —, Generalized Hessian properties of regularized nonsmooth functions, SIAM J. Optimization (to appear).
- —, Second-order nonsmooth analysis in nonlinear programming, Recent Advances in Nonsmooth Optimization (D. Du, L. Qi and R. Womersley, eds.), World Scientific Publishers, 1995, pp. 322–350.
- René Poliquin, Jon Vanderwerff, and Václav Zizler, Convex composite representation of lower semicontinuous functions and renormings, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 6, 545–549 (English, with English and French summaries). MR 1240796
- R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683
- R. T. Rockafellar, Local boundedness of nonlinear, monotone operators, Michigan Math. J. 16 (1969), 397–407. MR 253014
- R. T. Rockafellar, Proximal subgradients, marginal values, and augmented Lagrangians in nonconvex optimization, Math. Oper. Res. 6 (1981), no. 3, 424–436. MR 629642, DOI 10.1287/moor.6.3.424
- P. Huard, Un algorithme général de gradient réduit, EDF Bull. Direction Études Rech. Sér. C Math. Inform. 2 (1982), 91–109 (1983) (French). MR 700427
- R. T. Rockafellar, Maximal monotone relations and the second derivatives of nonsmooth functions, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 3, 167–184 (English, with French summary). MR 797269
- R. T. Rockafellar, First- and second-order epi-differentiability in nonlinear programming, Trans. Amer. Math. Soc. 307 (1988), no. 1, 75–108. MR 936806, DOI 10.1090/S0002-9947-1988-0936806-9
- R. T. Rockafellar, Proto-differentiability of set-valued mappings and its applications in optimization, Ann. Inst. H. Poincaré C Anal. Non Linéaire 6 (1989), no. suppl., 449–482. Analyse non linéaire (Perpignan, 1987). MR 1019126, DOI 10.1016/S0294-1449(17)30034-3
- R. Tyrrell Rockafellar, Second-order optimality conditions in nonlinear programming obtained by way of epi-derivatives, Math. Oper. Res. 14 (1989), no. 3, 462–484. MR 1008425, DOI 10.1287/moor.14.3.462
- R. T. Rockafellar, Generalized second derivatives of convex functions and saddle functions, Trans. Amer. Math. Soc. 322 (1990), no. 1, 51–77. MR 1031242, DOI 10.1090/S0002-9947-1990-1031242-0
- R. T. Rockafellar, Nonsmooth analysis and parametric optimization, Methods of nonconvex analysis (Varenna, 1989) Lecture Notes in Math., vol. 1446, Springer, Berlin, 1990, pp. 137–151. MR 1079762, DOI 10.1007/BFb0084934
- R. Tyrrell Rockafellar, Lagrange multipliers and optimality, SIAM Rev. 35 (1993), no. 2, 183–238. MR 1220880, DOI 10.1137/1035044
- Gabriella Salinetti and Roger J.-B. Wets, On the relations between two types of convergence for convex functions, J. Math. Anal. Appl. 60 (1977), no. 1, 211–226. MR 479398, DOI 10.1016/0022-247X(77)90060-9
- L. Thibault and D. Zagrodny, Integration of subdifferentials of lower semicontinuous functions, J. Math. Anal. Appl. 189 (1995), 33–58.
- Jean-Philippe Vial, Strong and weak convexity of sets and functions, Math. Oper. Res. 8 (1983), no. 2, 231–259. MR 707055, DOI 10.1287/moor.8.2.231
Bibliographic Information
- R. A. Poliquin
- Affiliation: Deptartment of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
- Email: rene@fenchel.math.ualberta.ca
- R. T. Rockafellar
- Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195
- Email: rtr@math.washington.edu
- Received by editor(s): December 21, 1994
- Received by editor(s) in revised form: June 7, 1995
- Additional Notes: This work was supported in part by the Natural Sciences and Engineering Research Council of Canada under grant OGP41983 for the first author and by the National Science Foundation under grant DMS–9200303 for the second author.
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 1805-1838
- MSC (1991): Primary 49A52, 58C06, 58C20; Secondary 90C30
- DOI: https://doi.org/10.1090/S0002-9947-96-01544-9
- MathSciNet review: 1333397