Decompositions in Quantum Logic
HTML articles powered by AMS MathViewer
- by John Harding
- Trans. Amer. Math. Soc. 348 (1996), 1839-1862
- DOI: https://doi.org/10.1090/S0002-9947-96-01548-6
- PDF | Request permission
Abstract:
We present a method of constructing an orthomodular poset from a relation algebra. This technique is used to show that the decompositions of any algebraic, topological, or relational structure naturally form an orthomodular poset, thereby explaining the source of orthomodularity in the ortholattice of closed subspaces of a Hilbert space. Several known methods of producing orthomodular posets are shown to be special cases of this result. These include the construction of an orthomodular poset from a modular lattice and the construction of an orthomodular poset from the idempotents of a ring. Particular attention is paid to decompositions of groups and modules. We develop the notion of a norm on a group with operators and of a projection on such a normed group. We show that the projections of a normed group with operators form an orthomodular poset with a full set of states. If the group is abelian and complete under the metric induced by the norm, the projections form a $\sigma$-complete orthomodular poset with a full set of countably additive states. We also describe some properties special to those orthomodular posets constructed from relation algebras. These properties are used to give an example of an orthomodular poset which cannot be embedded into such a relational orthomodular poset, or into an orthomodular lattice. It had previously been an open question whether every orthomodular poset could be embedded into an orthomodular lattice.References
- Ichiro Amemiya and Huzihiro Araki, A remark on Piron’s paper, Publ. Res. Inst. Math. Sci. Ser. A 2 (1966/1967), 423–427. MR 0213266, DOI 10.2977/prims/1195195769
- Ladislav Beran, Orthomodular lattices, Academia [Publishing House of the Czech Academy of Sciences], Prague, 1984. Algebraic approach. MR 785005
- Garrett Birkhoff, Lattice theory, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR 0227053
- Stanley Burris and H. P. Sankappanavar, A course in universal algebra, Graduate Texts in Mathematics, vol. 78, Springer-Verlag, New York-Berlin, 1981. MR 648287
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- B. S. DeWitt and R. D. Graham (ed.), The Many-Worlds Interpretation of Quantum Mechanics, Princeton University Press, 1973.
- J. Flachsmeyer, Ju. M. Smirnov, F. Topsøe, and F. Terpe (eds.), Proceedings of the Conference Topology and Measure III. Part 1, 2, Wissenschaftliche Beiträge [Scientific Contributions], Ernst-Moritz-Arndt-Universität, Greifswald, 1982. Held in Vitte and in Hiddensee, October 19–25, 1980. MR 677114
- D. J. Foulis, R. J. Greechie, and G. T. Rüttimann, Filters and supports in orthoalgebras, Internat. J. Theoret. Phys. 31 (1992), no. 5, 789–807. MR 1162623, DOI 10.1007/BF00678545
- R. J. Greechie, Orthomodular lattices admitting no states, J. Combinatorial Theory Ser. A 10 (1971), 119–132. MR 274355, DOI 10.1016/0097-3165(71)90015-x
- Richard J. Greechie, On generating distributive sublattices of orthomodular lattices, Proc. Amer. Math. Soc. 67 (1977), no. 1, 17–22. MR 450157, DOI 10.1090/S0002-9939-1977-0450157-9
- Bjarni Jónsson, Varieties of relation algebras, Algebra Universalis 15 (1982), no. 3, 273–298. MR 689767, DOI 10.1007/BF02483728
- A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195–206. MR 8
- Gudrun Kalmbach, Orthomodular lattices, London Mathematical Society Monographs, vol. 18, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1983. MR 716496
- Anatolij Dvurečenskij and Silvia Pulmannová (eds.), Proceedings of the Second Winter School on Measure Theory, Jednota Slovenských Matematikov a Fyzikov, Bratislava, 1990. Held in Liptovský Ján, January 7–12, 1990. MR 1118393
- Roger Maddux, Embedding modular lattices into relation algebras, Algebra Universalis 12 (1981), no. 2, 242–246. MR 608667, DOI 10.1007/BF02483882
- F. Maeda and S. Maeda, Theory of symmetric lattices, Die Grundlehren der mathematischen Wissenschaften, Band 173, Springer-Verlag, New York-Berlin, 1970. MR 0282889
- E. D. Rainville, Adjoints of linear differential operators, Amer. Math. Monthly 46 (1939), 623–627. MR 883, DOI 10.2307/2303203
- D. Kh. Mushtari, Logics of projectors in Banach spaces, Izv. Vyssh. Uchebn. Zaved. Mat. 8 (1989), 44–52 (Russian); English transl., Soviet Math. (Iz. VUZ) 33 (1989), no. 8, 59–70. MR 1039729
- Pavel Pták and Sylvia Pulmannová, Kvantové logiky, VEDA, Vydavatel′stvo Slovenskej Akadémie Vied, Bratislava, 1989 (Slovak, with English and Russian summaries). MR 1176313
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
Bibliographic Information
- John Harding
- Affiliation: Department of Mathematics, Brandon University, Brandon, Manitoba, R7A 6A9, Canada
- Email: Harding@Buster.BrandonU.Ca
- Received by editor(s): November 22, 1994
- Additional Notes: Research supported by the Natural Sciences and Engineering Research Council of Canada
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 1839-1862
- MSC (1991): Primary 81P10, 06Cxx, 03G15
- DOI: https://doi.org/10.1090/S0002-9947-96-01548-6
- MathSciNet review: 1340177