
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 348, Number 5, May 1996

DECOMPOSITIONS IN QUANTUM LOGIC

JOHN HARDING

Abstract. We present a method of constructing an orthomodular poset from
a relation algebra. This technique is used to show that the decompositions of
any algebraic, topological, or relational structure naturally form an orthomod-
ular poset, thereby explaining the source of orthomodularity in the ortholattice
of closed subspaces of a Hilbert space. Several known methods of producing
orthomodular posets are shown to be special cases of this result. These in-
clude the construction of an orthomodular poset from a modular lattice and
the construction of an orthomodular poset from the idempotents of a ring.

Particular attention is paid to decompositions of groups and modules. We
develop the notion of a norm on a group with operators and of a projection on
such a normed group. We show that the projections of a normed group with
operators form an orthomodular poset with a full set of states. If the group is
abelian and complete under the metric induced by the norm, the projections
form a σ-complete orthomodular poset with a full set of countably additive
states.

We also describe some properties special to those orthomodular posets con-
structed from relation algebras. These properties are used to give an example
of an orthomodular poset which cannot be embedded into such a relational
orthomodular poset, or into an orthomodular lattice. It had previously been
an open question whether every orthomodular poset could be embedded into
an orthomodular lattice.

1. Introduction

A cornerstone of the quantum logic approach to quantum mechanics is the fact
that the closed subspaces of a Hilbert space satisfy the orthomodular law

if A ⊆ B, then B = A⊕ (A⊥ ∩B).

There has long been a question as to why a Hilbert space should be the vehicle
used to describe quantum mechanics, so it is natural to ask whether the axioms of
a Hilbert space could somehow be weakened while retaining orthomodularity. A
theorem of Amemiya and Araki [1] shows that the ortholattice of closed subspaces
of a Euclidean space is orthomodular if and only if the Euclidean space is complete,
i.e. a Hilbert space. So at first glance it seems that orthomodularity is intricately
tied to the structure of the Hilbert space and will not be preserved by any useful
weakening of the axioms. This could not be further from the truth.
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We show that absolutely none of the structure of a Hilbert space is necessary
to produce an orthomodular poset. One must simply adjust the way in which
closed subspaces are viewed. The point is that closed subspaces are in complete
correspondence with decompositions H ∼= H1 × H2 of the Hilbert space H into
the product of two Hilbert spaces H1 and H2. With each such decomposition we
associate an ordered pair of equivalence relations (α1, α2), where αi is the kernel
of the projection onto Hi. We can then view the orthomodular poset of closed
subspaces of a Hilbert space as being constructed from certain ordered pairs of
equivalence relations on H.

We can mimic this procedure for any set X . We define Fact X to be those pairs
of equivalence relations (α1, α2) on X which occur as the kernels of the projections
associated with a direct decomposition X ∼= X1 × X2; two such pairs of equiva-
lence relations are orthogonal if their associated decompositions admit a common
refinement. As we shall see, Fact X carries the structure of an orthomodular poset.
Therefore, orthomodularity is not due to any intricate structure of the Hilbert space
— it is a consequence of arithmetical properties of relations.

This paper is organized in the following manner. Section 2 contains a brief
introduction to relation algebras. Relation algebras are an abstraction of the algebra
RX of all relations on a set X , and it should not be surprising that our construction
of an orthomodular poset from the relations on a set X can be extended to an
arbitrary relation algebra. All of our results remain valid in this more general
setting, and will be presented in this way. This extra generality is worthwhile, as
it allows a unified presentation of several techniques for constructing orthomodular
posets. The reader who has no interest in relation algebras can read the great
majority of this paper simply by considering our results in the familiar setting of
relations over a set. However, it is still advisable to read Section 2 in order to
familiarize oneself with our notation for relational products, etc.

The central result of the paper is contained in Section 3; here we describe how
one can construct an orthomodular poset from any relation algebra. In Section 4
we give examples of orthomodular posets constructed from relation algebras. These
examples include many familiar orthomodular posets such as the projection opera-
tors of a Hilbert space, all modular ortholattices, orthomodular posets constructed
from modular lattices [18], and orthomodular posets constructed from the idem-
potents of a ring with unit [7, 14]. New examples of orthomodular posets are also
given. We show that the decompositions of any algebraic, topological or relational
structure form an orthomodular poset, and show how to construct an orthomodular
poset from the subgroups of a group.

In Section 5 we focus our results on decompositions of algebraic structures to
groups with operators, a class of algebras which includes groups and modules. There
are alternate ways of describing the decompositions of a group G with operators
which are better suited to calculations; we can describe the decompositions of G
in terms of inner direct sums, or by using certain idempotent endomorphisms of
G. The structure of the orthomodular poset Fact G is described both in terms of
inner direct sums and in terms of endomorphisms of G, laying the groundwork for
results in Section 6. The description of Fact G in terms of endomorphisms of G is
closely related to the logic of idempotents of a ring as studied by Flachsmeyer [7]
and Katrnoška [14].

In Section 6 we continue our investigation into the decompositions of a group
with operators. We define the notion of a norm on a group with operators, and of a
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projection on a normed group with operators. We show that these projections have
many of the properties of projection operators on a Hilbert space. In particular,
the projection operators of a normed group form an orthomodular poset with a
full set of states, and the projection operators of a complete normed abelian group
form a σ-complete orthomodular poset with a full set of countably additive states.

In the final section, we give examples of orthomodular posets which cannot be
embedded into any relational orthomodular poset. We also show that these patho-
logical orthomodular posets cannot be embedded into any orthomodular lattice.
The question as to whether every orthomodular poset could be embedded into an
orthomodular lattice surprisingly seems to have been open.

2. Relation algebras

Relation algebras were first introduced by Tarski in [20]. The motivating example
is the algebra RX of all relations over a set X . Specifically, this consists of the
Boolean algebra B of all subsets of X×X together with the operation ; of relational
multiplication, ^ of conversion, and the constant 1′ being the identical relation.
The reader should consult [11] for background on relation algebras.

Definition 2.1. A relation algebra is a Boolean algebra (B,+, ·,−, 0, 1) with an
additional binary operation ;, an additional unary operation ^ and a constant 1′,
which satisfies the following identities:

(2.1.1) (a; b); c = a; (b; c),
(2.1.2) (a+ b); c = a; c+ b; c,
(2.1.3) a; 1′ = a,
(2.1.4) a^^ = a,
(2.1.5) (a+ b)^ = a^ + b^,
(2.1.6) (a; b)^ = b^; a^,
(2.1.7) a^; (a; b)− + b− = b−.

This system of axioms was chosen to be satisfied in any algebra RX . However,
there are identities which hold in each algebra RX which are not implied by this
axiom system [11]. Therefore, relation algebras are a true generalization of the
algebras of relations over a set.

The following lemma, due to Chin and Tarski [5], states that a fragment of
modularity holds in any relation algebra. This is a key point in our study of
decompositions.

Lemma 2.2. Let a, b, c be elements of a relation algebra R.

(2.2.1) If a; c ≤ a and a; c^ ≤ a, then a · (b; c) = (a · b); c.
(2.2.2) If c; a ≤ a and c^; a ≤ a, then (c; b) · a = c; (b · a).
(2.2.3) If c = c^ and a; c = c; a = a and a ≤ b; c = c; b, then (a · b); c = a =

c; (b · a).
(2.2.4) If c ≤ a = a^ = a; a and a · b = 1′, then a · (c; b) = c.

Proof. The first statement can be found in [5, Corollary 2.19]. The second state-
ment follows from the first using (2.1.4), (2.1.6) and the fact that (a ·b)^ = a^ ·b^.
The third statement follows directly from the first two, and the fourth follows from
the second using (2.1.3).
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3. Orthomodular posets from relation algebras

We will describe a method to construct an orthomodular poset from a relation
algebra. The reader will recall that an orthocomplemented poset is a structure
(P,≤, 0, 1,⊥), where (P,≤, 0, 1) is a bounded poset and ⊥ is an order inverting
map of period two such that x⊥ is a complement of x for each x ∈ P . An ortho-
complemented poset is an orthomodular poset if for each pair of elements x, y ∈ P
with x ≤ y⊥ we have that the join x+ y of x and y exists and y⊥ = x+ (x+ y)⊥.
This latter condition is referred to as the orthomodular law. The reader should
see [2, 13, 19] for a complete account of orthomodular posets and their applications
to quantum mechanics.

Definition 3.1. For a relation algebra R define

(3.1.1) R(1) = {x ∈ R : 1′ ≤ x = x;x = x^},
(3.1.2) R(2) = {(x, x′) ∈ R(1) ×R(1) : 1′ = x · x′ and x;x′ = x′;x = 1}.

And define a relation ⊆ on R(2) by

(3.1.3) (x, x′) ⊆ (y, y′) if x ≤ y, y′ ≤ x′ and x; y′ = y′;x.

We shall call the members of R(1) proper equivalence elements. The term equiv-
alence element has historically been used without the requirement that 1′ ≤ x.

Remark 3.2. For the relation algebra RX of all binary relations on a set X , RX(1)

is just the set of all equivalence relations on X , and RX(2) is the set of all ordered
pairs of equivalence relations (x, x′) such that X ∼= X/x×X/x′. For the relation
algebra RX , the content of the following lemma is that (x, x′) ⊆ (y, y′) if and
only if X is canonically isomorphic to X/y × X/(x; y′) × X/x′. In other words,
(x, x′) ⊆ (y, y′) if the decompositions X ∼= X/x×X/x′ and X ∼= X/y′×X/y admit
a common refinement.
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Lemma 3.3. Let (x, x′) and (y, y′) be elements of R(2) for some relation algebra
R. If (x, x′) ⊆ (y, y′), then

(3.3.1) x; (x′ · y) = y = (x′ · y);x,
(3.3.2) y′; (x′ · y) = x′ = (x′ · y); y′,
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(3.3.3) y · (x; y′) = x,
(3.3.4) x′ · (x; y′) = y′.

This implies that the set {1′, 1, x, x′, y, y′, (x′ · y), (x; y′)} is a Boolean lattice under
the partial ordering inherited from R. Meets in this lattice agree with meets in R,
while joins are given by ; . In particular, the elements of this set commute under
the operation ; .

Proof. Note first that for elements a, b of R(1), if a ≤ b, then a; b = b; a = b. We
make repeated use of this fact in conjunction with the assumptions x ≤ y and
y′ ≤ x′. The first statement follows directly from (2.2.3) using y, x′ and x in place
of a, b and c respectively. The second statement also follows from (2.2.3) using x′,
y and y′ in place of a, b and c respectively. The third statement follows from (2.2.2)
using y, y′ and x in place of a, b and c respectively (recall that y · y′ = 1′ since
(y, y′) is in R(2)). The fourth statement follows from (2.2.2) using x′, x and y′ in
place of a, b and c respectively.

These four conditions and the assumption that (x, x′) ⊆ (y, y′) imply that the
set {1′, 1, x, x′, y, y′, (x′ ·y), (x; y′)} is closed under the operations · and ;. Therefore
this set forms a lattice under the partial ordering inherited from R, with meets
agreeing with those in R. That joins are given by ; follows from the monotonicity
of ;. It is then routine to check that this lattice is Boolean.

Definition 3.4. For a relation algebra R, define a map ⊥: R(2) −→ R(2) and
constants 0 and 1 of R(2) as follows:

(3.4.1) (x, x′)⊥ = (x′, x),
(3.4.2) 0 = (1′, 1),
(3.4.3) 1 = (1, 1′).

Theorem 3.5. For any relation algebra R, the system (R(2),⊆, 0, 1,⊥) is an or-
thomodular poset. The operation ⊕ of orthogonal join in R(2) is given as follows:

(3.5.1) if (x, x′) ⊆ (y, y′)⊥, then (x, x′)⊕ (y, y′) = ((x; y), (x′ · y′)).

Proof. We first show that ⊆ is a partial ordering. The only point which is not
obvious is transitivity. If (x, x′) ⊆ (y, y′) ⊆ (z, z′), we must show that (x, x′) ⊆
(z, z′). This will follow easily once we have shown that x; z′ = z′;x. Note that by
Lemma 3.3

z′ ≤ (x; z′;x) · y′ ≤ (y; z′; y) · y′ = (y; z′) · y′ = z′.

So (x; z′;x) · y′ = z′. By applying (2.2.3) with (x; z′;x), y′ and x in place of a, b
and c respectively, we obtain

x; ((x; z′;x) · y′) = ((x; z′;x) · y′);x.

Upon substituting (x; z′;x) · y′ = z′, we have x; z′ = z′;x as required.
It is easily seen that 0 and 1 are the lower and upper bounds, respectively, of

the poset R(2). It is also clear that ⊥ is an orthocomplementation. We next verify
(3.5.1). If (x, x′) ⊆ (y, y′)⊥, then by Lemma 3.3, ((x; y), (x′ · y′)) is in R(2) and
is clearly the least upper bound of (x, x′) and (y, y′). We have only to check the
orthomodular law. If (x, x′) ⊆ (y, y′), then by (3.5.1)

(x, x′)⊕ ((x, x′)⊕ (y, y′)⊥)⊥ = ((x; (x′ · y)), (x′ · (x; y′))).

Then an application of Lemma 3.3 concludes the proof.
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4. Relational orthomodular posets

An orthomodular poset P will be called a relational orthomodular poset if there
is a relation algebra R and an order embedding of P into R(2) which preserves or-
thocomplementation and finite orthogonal joins. We show that the orthomodular
lattice L(H) of closed subspaces of a Hilbert space H is a relational orthomodular
poset. In fact, it is a sub-orthomodular poset of RH(2), the collection of all decom-
positions of the underlying set ofH. This demonstrates that the orthomodularity in
L(H) is due to arithmetical properties of relations. In this section, we will describe
several methods for constructing relational orthomodular posets. In particular, we
show that the decompositions of any algebraic, relational or topological structure
form a relational orthomodular poset.

Remark 4.1. For a set X , the collection of binary relations over X forms a rela-
tion algebra RX . It is easily seen that RX(2) consists of exactly those pairs of
equivalence relations (α, β) for which the natural map from X to X/α × X/β is
an isomorphism. Note that the condition for (α, β) to be orthogonal to (α′, β′)
amounts to saying that

X ∼= X/β ×X/(α;α′)×X/β′

is a common refinement of the decompositions X ∼= X/α×X/β and X ∼= X/α′ ×
X/β′. To be consistent with the notation of Section 3, we use ; to denote relational
product and · for the intersection of relations.

Remark 4.2. For an algebra A = (A, (fi)I), let Fact A be the set of all pairs (α, β)
in RA(2) for which α and β are congruences on A. Clearly Fact A is closed under
the orthocomplementation of RA(2). But the intersection of two congruences is a
congruence, and the relational product of permuting congruences is a congruence. It
follows that Fact A is closed under finite orthogonal joins taken in RA(2). Therefore,
Fact A is a relational orthomodular poset. Notice that these remarks remain valid
even if we allow A to have infinitary operations.

Definition 4.3. Let (X, τ) be a topological space, where τ denotes the collection
of open subsets of X . If α is an equivalence relation on X , we define τ/α to be a
collection of subsets of X/α by setting

(4.3.1) τ/α = {{x/α : x ∈ A} : A ∈ τ}.
If (α, β) is a pair of equivalence relations in RX(2) we write τ = τ/α × τ/β if
τ/α and τ/β are topologies and the space (X, τ) is naturally homeomorphic to the
product of the spaces (X/α, τ/α) and (X/β, τ/β). There may well be no topologies
on X/α and X/β making (X, τ) naturally homeomorphic to the product of the
spaces X/α and X/β. However, if such topologies do exist, the fact that projection
maps are open and continuous implies that these topologies must be equal to τ/α
and τ/β. Define

(4.3.2) Fact (X, τ) = {(α, β) ∈ RX(2) : τ = τ/α× τ/β}.

Theorem 4.4. If (X, τ) is a topological space, then Fact (X, τ) is a sub-ortho-
modular poset of RX(2), and therefore Fact (X, τ) is a relational orthomodular
poset.

Proof. It is obvious that Fact (X, τ) is closed under orthocomplementation. We
have only to show that it is closed under finite orthogonal joins.
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Let (α, β) and (α′, β′) be orthogonal elements of Fact (X, τ). We may assume
that X = A×B × C and that

X/β ∼= A, X/(α;α′) ∼= B and X/β′ ∼= C,

while
X/α ∼= B × C, X/(β · β′) ∼= A× C and X/α′ ∼= A×B.

Then as (α, β) and (α′, β′) are in Fact (X, τ), there are topologies µ, λ, δ and π such
that

(A×B × C, τ) ∼= (A,µ)× (B × C, λ)

and
(A×B × C, τ) ∼= (A×B, δ)× (C, π).

If we can show there is a topology ξ on B such that

(A×B × C, τ) ∼= (A,µ)× (B, ξ)× (C, π),

it will follow that

(A×B × C, τ) ∼= (B, ξ)× (A× C, µ× π),

where µ× π is the product topology. But this is precisely what is needed to show
that (α;α′, β · β′) is in Fact (X, τ).

Before we define the topology ξ on B required to prove the theorem, it will
be convenient to establish some notation for the various projection operations. A
fundamental fact that we use repeatedly is that the projection operations associated
with a topological direct product are both open and continuous. Let f , g and h be
the projections of A× B × C onto A, B and C respectively, and f × g, f × h and
g× h be the projections of A×B ×C onto A×B, A×C and B ×C respectively.
For any subset Y of A×B × C, it is a matter of routine to verify that

A× g[Y ]× C = A× (g × h)[Y ′], where Y ′ = (f × g)[Y ]× C.

It follows from the fact that τ = µ× λ and τ = δ × π, that if Y is open in τ , then
A× g[Y ]× C is also open in τ .

We are now ready to define the topology ξ on B needed to establish the theorem.
Set

ξ = {g[Y ] : Y ∈ τ}.
Clearly ξ is closed under arbitrary unions. To show that ξ is a topology, we must
show that for all open subsets Y1 and Y2 in τ and all points b in B,

if b ∈ g[Y1] ∩ g[Y2], then there is Y ∈ τ with b ∈ g[Y ] ⊆ g[Y1] ∩ g[Y2].

It is a simple matter to check that we may set Y to be the intersection of A×g[Y1]×C
and A× g[Y2]× C. We have shown that ξ is a topology on B.

It remains only to show that τ is equal to the product topology µ × ξ × π. As
τ = µ × λ, it follows that µ = {f [Y ] : Y ∈ τ}, and as τ = δ × π, it follows that
π = {h[Y ] : Y ∈ τ}. Therefore, the product topology µ× ξ × π has as a sub-basis
the set

{f [Y ]×B × C : Y ∈ τ} ∪ {A× g[Y ]× C : Y ∈ τ} ∪ {A×B × h[Y ] : Y ∈ τ}.
As τ = µ×λ, it follows that the first of these sets is in τ , and as τ = δ×π, it follows
that the last of these sets is in τ . But in an earlier remark, we have established that
the second of these sets is in τ . Therefore this sub-basis of the product topology
is contained in τ , giving that τ contains the product topology. To show that τ is
contained in the product topology, assume that (a0, b0, c0) is an element of an open
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set Y of τ . As τ = µ×λ, there is a τ -open subset U of Y with (a0, b0, c0) in U and
U = P ×Q for some P ⊆ A and some Q ⊆ B × C. Note that U satisfies

if (a, b, c) ∈ U and (a′, b′, c′) ∈ U , then (a, b′, c′) ∈ U .

But τ = δ×π, so there is a τ -open subset V of U with (a0, b0, c0) in V and V = R×S
for some R ⊆ A×B and S ⊆ C. Note that V satisfies

if (a, b, c) ∈ V and (a′, b′, c′) ∈ V , then (a, b, c′) ∈ V .

Set W = f [V ] × g[V ] × h[V ]. It is easily seen that (a0, b0, c0) is in W , and the
properties of U and V listed above readily establish that W is contained in Y . But
V is open in τ , and this implies W is open in the product topology. Therefore
each point of Y has a neighbourhood which is open in the product topology and
contained in Y , so Y is also open in the product topology. So τ = µ× ξ× π, which
establishes the theorem.

Definition 4.5. Let (X,T ) be a binary relational structure with T a non-empty
relation on X . If α is an equivalence relation on X , define a binary relation T/α
on X/α by setting

(4.5.1) T/α = {(x/α, y/α) : (x, y) ∈ T}.
If (α, β) is a pair of equivalence relations in RX(2), write T = T/α×T/β if (X,T ) is
naturally isomorphic to the product of the structures (X/α, T/α) and (X/β, T/β).
There may be no relations on X/α and X/β making (X,T ) naturally isomorphic
to the product of the structures X/α and X/β. However, if such relations do exist,
they must be equal to T/α and T/β. Define

(4.5.2) Fact (X,T ) = {(α, β) ∈ RX(2) : T = T/α× T/β}.

Theorem 4.6. If (X,R) is a binary relational structure with the relation R non-
empty, then Fact (X,R) is a sub-orthomodular poset of RX(2), and therefore
Fact (X,R) is a relational orthomodular poset.

Proof. Proceeding as in the proof of Theorem 4.4, it is sufficient to show that if
R,S, T, U and V are relations such that

(A×B × C,R) ∼= (A,U)× (B × C, V )

and

(A×B × C,R) ∼= (A×B,S)× (C, T ),

then there is a relation W on B such that

(A×B × C,R) ∼= (A,U)× (B,W )× (C, T ).

Note that the assumptions imply that

U = {(a, a′) : there exist b, b′, c, c′ with (a, b, c)R (a′, b′, c′)},

V = {((b, c), (b′, c′)) : there exist a, a′ with (a, b, c)R (a′, b′, c′)},
S = {((a, b), (a′, b′)) : there exist c, c′ with (a, b, c)R (a′, b′, c′)},

and

T = {(c, c′) : there exist a, a′, b, b′ with (a, b, c)R (a′, b′, c′)}.
Define

W = {(b, b′) : there exist a, a′, c, c′ with (a, b, c)R (a′, b′, c′)}.



DECOMPOSITIONS IN QUANTUM LOGIC 1847

We have to show that R is the product of the relations U , W and T . For conve-
nience, we denote this product relation by P . Note that

P = {((a, b, c), (a′, b′, c′)) : aU a′, bW b′ and c T c′}.
If (a, b, c) is R-related to (a′, b′, c′), then we have (a, a′) ∈ U , (b, b′) ∈ W and

(c, c′) ∈ T , and therefore (a, b, c) is P -related to (a′, b′, c′). So R is contained in
P . Next, assume that (a1, b2, c3) is P -related to (a′1, b

′
2, c
′
3). Then (a1, a

′
1) ∈ U ,

(b2, b
′
2) ∈W and (c3, c

′
3) ∈ T . This implies that there are elements ai, a

′
i, bi, b

′
i and

ci, c
′
i for i = 1, 2, 3 such that

(a1, b1, c1)R (a′1, b
′
1, c
′
1), (a2, b2, c2)R (a′2, b

′
2, c
′
2) and (a3, b3, c3)R (a′3, b

′
3, c
′
3).

Then (b2, c2) is V -related to (b′2, c
′
2) and a1 is U -related to a′1. As R is equal to the

product of the relations U and V , we have that

(a1, b2, c2)R (a′1, b
′
2, c
′
2).

This implies that (a1, b2) is S-related to (a′1, b
′
2). But c3 is T -related to c′3, and as

R is equal to the product of the relations S and T , it follows that

(a1, b2, c3)R (a′1, b
′
2, c
′
3).

Therefore P is contained in R, giving that P and R are equal.

Remark 4.7. We have shown that the factor pairs of any algebra, topological space
or non-empty relational structure form a sub-orthomodular poset of RX(2), where
X is the underlying set of the structure. As the intersection of a family of sub-
orthomodular posets is a sub-orthomodular poset, we may combine these results at
will. For example, the factor pairs of a partially ordered topological group would
form a relational orthomodular poset.

Remark 4.8. Let H be a Hilbert space. For a closed subspace A of H, it is well-
known that every vector v in H can be expressed in a unique manner as the sum
of a vector in A and a vector in A⊥. If we let A denote both a subspace of the
vector space H and the congruence associated with that subspace, we have that
(A,A⊥) is an element of RH(2) for every closed subspace A of H. If A and B are
closed subspaces with A ⊆ B⊥, then the subspace A ⊕ B generated by A ∪ B is
closed and (A⊕B)⊥ is equal to A⊥ ∩B⊥. It follows that the collection of all such
pairs (A,A⊥) is a subset of RH(2) which is closed under orthocomplementation and
finite orthogonal joins. Therefore the orthomodular lattice of closed subspaces of a
Hilbert space is a relational orthomodular poset.

Remark 4.9. Flachsmeyer [7] and Katrnoška [14] introduced a method to construct
an orthomodular poset LA from the idempotents of a ring A with unit. For idem-
potents e and f , set e ≤ f if ef = e = fe, and put e⊥ = 1 − e. As idempo-
tents of A correspond to direct decompositions of the left A-module AA, it fol-
lows that LA is isomorphic to the relational orthomodular poset Fact AA. We
leave it to the reader to verify that e; (α, β) is the required isomorphism, where
α = {(x, y) ∈ A2 : x− y ∈ Ae} and β = {(x, y) ∈ A2 : x− y ∈ A(1 − e)}. See also
Remark 5.8.

Remark 4.10. An interesting method of constructing relational orthomodular
posets comes from the fact that the complex algebra of a group G is a relation
algebra G+ [11]. The elements of G+ are subsets of G, the relational product of
two subsets A and B is given by the usual product AB of subsets of a group, A^
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is given by A−1, and 1′ is {e}. It follows that (G+)(1) consists of all subgroups of G
and (G+)(2) consists of all pairs of subgroups (A,B) with A ∩B equal to {e} and
AB = G. Notice that if G is an abelian group, then (G+)(2) is just Fact G.

Remark 4.11. We also have a way of constructing a relational orthomodular poset
from any bounded modular lattice. For a bounded modular lattice M , let M (2)

be the set of all ordered pairs of complementary elements of M , i.e. pairs (x, x′)
with x · x′ = 0 and x + x′ = 1. Define a relation ⊆ on M (2) by setting (x, x′) ⊆
(y, y′) if x ≤ y and y′ ≤ x′, and define a unary operation ⊥ on M (2) by setting
(x, x′)⊥ to be (x′, x). The following theorem demonstrates that M (2) is a relational
orthomodular poset. It is a pleasant exercise to give an elementary proof that M (2)

is an orthomodular poset.
Mushtari [18] was the first to discover this construction, and was able to show

somewhat more. Let L be a lattice which is both M -symmetric and M∗-symmetric
[16], and let L(2) be all pairs of complementary elements of L which are both
modular pairs and dual modular pairs [16]. Then L(2) forms an orthomodular
poset with ⊆ and ⊥ as described above.1

Theorem 4.12. For a bounded modular lattice M , (M (2),⊆,⊥, (0, 1), (1, 0)) is an
orthomodular poset. Orthogonal joins in M (2) are given as follows :

if (x, x′) ⊆ (y, y′)⊥, then (x, x′)⊕ (y, y′) = (x+ y, x′ · y′).
Further, for each bounded modular lattice M , there is a relation algebra RM with
M (2) equal to (RM )(2).

Proof. If R is a commutative relation algebra (i.e. a; b = b; a for all a, b in R), then
(R(1),≤, 1′, 1) is a bounded modular lattice with meets agreeing with those in R,
and joins being given by relational product. It is routine to see that R(1) is a lattice,
and modularity follows from Lemma 2.2. It is apparent that forM = (R(1),≤, 1′, 1),
we have that M (2) is equal to R(2). For any bounded modular lattice M , define a
ternary relation S on M by setting

S = {(x, y, z) : x+ y = x+ z = y + z}.
Maddux [15] (see also [11]) has shown that the complex algebra of (M,S, {0}) is
a symmetric (x = x^), hence commutative, relation algebra which we denote by
RM . Further, the modular lattice (RM )(1) is the ideal lattice IM of M . As M
is a bounded modular lattice, the complemented elements of IM are exactly the
principal ideals generated by complemented elements of M . Therefore, up to an
obvious isomorphism, (RM )(2) = (IM)(2) = M (2).

Remark 4.13. For a modular ortholattice M , we can embed M into M (2) via the
map x ; (x, x⊥). As this map preserves orthocomplementation and orthogonal
joins, every modular ortholattice is a relational orthomodular poset.

Remark 4.14. One might hope that for a complete modular lattice M , the relational
orthomodular poset M (2) would be orthocomplete. This is generally not the case.
However, if M is both join and meet continuous, then M (2) is orthocomplete. To
verify this, suppose that (xi, x

′
i), i ∈ I, is a pairwise orthogonal family of elements

of M (2). For any finite subset F of I, let XF =
∑
F xi and X ′F =

∏
F x
′
i. Clearly,

1Mushtari claims a stronger result [18, Theorem 2, p. 67], but this is not correct. See the third
lattice of [16, Exercise 1.1, p. 5] for a counterexample.
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the ordered pair (XF , X
′
F ) is equal to

∑
F (xi, x

′
i). Let X =

∑
I xi and X ′ =

∏
I x
′
i.

We have only to show that X and X ′ are complements. But

X ′ ·X = X ′ ·
∑
I

xi = X ′ ·
∑
F⊆I

XF =
∑
F⊆I

(X ′ ·XF ) ≤
∑
F⊆I

(X ′F ·XF ) = 0.

We have used continuity, and the fact that
∑
F⊆I XF is the join of an upwardly

directed family. By symmetry, X +X ′ = 1.
We can apply these remarks to metric lattices [3], a class of lattices which includes

finite modular lattices and continuous geometries. As the metric space completion
of a metric lattice is both join and meet continuous [3], it follows that for a metric
lattice M , the orthomodular poset M (2) can be embedded into an orthocomplete
orthomodular poset. One can also check that for any metric lattice M , the ortho-
modular poset M (2) has a finitely additive state, and if M is metrically complete,
this state is countably additive.

5. Decompositions of groups and modules

In this section we apply our results on decompositions of algebras to groups with
operators, a class of algebras that includes groups and modules.

Definition 5.1. Following van der Waerden [21, p. 138], a group with operators
consists of a groupG together with a family F of endomorphisms of G, i.e. each α ∈
F is a unary map α : G −→ G which is compatible with the group multiplication,
inverse, and identity. Any module is a group with operators, as is any group.
Homomorphisms and subalgebras of a group G with operators are defined in the
usual manner, considering the operators in F to be fundamental operations of the
algebra. We prefer to write the group operations as +, − and 0, though a group
with operators need not be abelian.

We begin by describing the various methods at hand to represent direct decom-
positions of a group G with operators.

Definition 5.2. Let G be a group with operators. We say that G is the inner direct
sum of G1, . . . , Gn, written G = G1 ⊕ · · · ⊕ Gn, if (i) G1, . . .Gn are subalgebras
of G, (ii) every element g ∈ G can be expressed in a unique fashion as a sum
g = g1 + · · · + gn where gi ∈ Gi, and (iii) in each such unique representation
g = g1 + · · · + gn, the elements g1, . . . , gn are pairwise commuting. For an inner
direct sum G = G1 ⊕G2 we define maps µi : G −→ Gi for i = 1, 2 by setting

(5.2.1) µ1g = g1 and µ2g = g2 if g = g1 + g2 with g1 ∈ G1 and g2 ∈ G2.

We define the collection of all inner direct sums of G by setting

(5.2.2) Sums G = {(G1, G2) : G = G1 ⊕G2}.

Definition 5.3. For a group G with operators, we denote the collection of endo-
morphisms of G by End G. We use 1 to denote the identity map on G and 0 for
the endomorphism which sends each element of G to 0. For endomorphisms f and
g, we define maps fg and f +g by setting fg to be the composition of f and g, and
f + g to be the pointwise sum of f and g. Each such map fg is an endomorphism
of G, but f + g need not be an endomorphism if G is not abelian. We then set

(5.3.1) E(End G) = {f ∈ End G : f = ff and 1− f = −f + 1 ∈ End G}.
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Note that if G = G1 ⊕ G2 then the map µ1 is in E(End G), and 1 − µ1 = µ2.
If G is an abelian group with operators, then E(End G) has a particularly simple
description — it is the collection of idempotents of the endomorphism ring of G.

The connection between decompositions of G and End G is partially furnished
by the following theorem. The proof of this theorem is not difficult, but it is quite
lengthy. We leave the details to the reader, and note that hints are given in [17,
exercises 4-6, p. 293].

Theorem 5.4. Let G be a group with operators. The maps in the following diagram
are in pairs of mutually inverse isomorphisms, and all triangles in this diagram
commute:

-�

�
�	�
�� @

@R@
@I

φ′

φ

λ ϕ
λ′ ϕ′

Fact G

E(End G) Sums G

These maps are defined as follows;

(5.4.1) (α1, α2)
ϕ
; (0/α1, 0/α2),

(5.4.2) (G1, G2)
ϕ′

; (α1, α2), where αi = {(x, y) : x− y ∈ Gi},
(5.4.3) (G1, G2)

φ
; µ1 (see (5.2.1)),

(5.4.4) f
φ′

; (f [G], (1− f)[G]),

(5.4.5) f
λ
; (ker (1− f), ker f),

(5.4.6) (α1, α2)
λ′
; f , where fx = y if 0α1 y α2 x.

As the sets Fact G, Sums G and E(End G) are isomorphic and Fact G is an
orthomodular poset, the other sets also carry the structure of orthomodular posets.
The next three theorems outline the details of the orthomodular structure on each
of these sets. We use ⊥ to denote orthocomplementation, ≤ for the partial ordering
and ⊕ for orthogonal joins.

Theorem 5.5. Let G be a group with operators. Then Fact G is an orthomodular
poset, where

(5.5.1) (α1, α2)⊥ = (α2, α1),
(5.5.2) (α1, α2) ≤ (β1, β2) if α1 ⊆ β1 and β2 ⊆ α2,
(5.5.3) (α1, α2)⊕ (β1, β2) = (α1;β1, α2 · β2).

Proof. This follows immediately from the results of Section 3 taking into account
that all congruences on a group permute.

Theorem 5.6. Let G be a group with operators. Then Sums G is an orthomodular
poset, where

(5.6.1) (G1, G2)⊥ = (G2, G1),
(5.6.2) (G1, G2) ≤ (H1, H2) if G1 ⊆ H1 and H2 ⊆ G2,
(5.6.3) (G1, G2)⊕ (H1, H2) = (G1 ⊕H1, G2 ∩H2).

We use G1 ⊕H1 to denote {g1 + h1 : g1 ∈ G1 and h1 ∈ H1}.
Proof. Recall that by Theorem 5.4, ϕ and ϕ′ are mutually inverse isomorphisms
between Fact G and Sums G. As ϕ′(G2, G1) = ϕ′(G1, G2)⊥, it follows that (G2, G1)
is equal to ϕ(ϕ′(G1, G2)⊥). The normal subgroup G1 is contained in the normal
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subgroup H1 if and only if the congruence associated with G1 is contained in the
congruence associated with H1. Therefore ϕ′(G1, G2) ≤ ϕ′(H1, H2) if and only if
G1 ⊆ H1 and H2 ⊆ G2. Finally, to verify that

ϕ(ϕ′(G1, G2)⊕ ϕ′(H1, H2)) = (G1 ⊕H1, G2 ∩H2),

it is sufficient to note that G1⊕H1 is the normal subgroup generated by G1∪H1.

Theorem 5.7. Let G be a group with operators. Then E(End G) is an orthomod-
ular poset, where

(5.7.1) f⊥ = 1− f ,
(5.7.2) f ≤ g if fg = f = gf ,
(5.7.3) f ⊕ g = f + g.

In particular, f is orthogonal to g if and only if fg = 0 = gf .

Proof. Recall that by Theorem 5.4, φ and φ′ are mutually inverse isomorphisms
between Sums G and E(End G). As φ′(1 − f) = (φ′f)⊥, it follows that 1 − f =
φ(φ′f⊥). Next, we note that as g is idempotent, gf = f if and only if f [G] ⊆ g[G].
Then, as (1 − f)(1 − g) = 1 − g if and only if fg = f , it follows that fg = f if
and only if (1 − g)[G] ⊆ (1 − f)[G]. We have shown that φ′f ≤ φ′g if and only if
gf = f = fg. Finally, we claim that if f is orthogonal to g, then

φ(φ′f ⊕ φ′g) = f + g.

This follows from the observation that if x = (x1 + x2) + x3, with x1 in f [G], x2 in
g[G] and x3 in (1− f)[G] ∩ (1− g)[G], then (f + g)x = x1 + x2.

Remark 5.8. As the endomorphisms of a module M form a ring, Theorem 5.7 shows
that Fact M is isomorphic to the orthomodular poset L(End M) of idempotents of
the endomorphism ring of M . However, we have noted in Remark 4.9 that for any
ring A, the orthomodular poset LA is isomorphic to Fact AA. Therefore, the or-
thomodular posets which arise as LA for some ring A are exactly the orthomodular
posets which arise as decompositions of some module.

Remark 5.9. Jónsson has shown that one can describe the decompositions of any
algebra with zero both in terms of inner direct sums and in terms of endomorphisms
of the algebra [17, pp. 282-283]. For any algebra G with zero, one could describe
the orthomodular poset Fact G both in terms of Sums G and in terms of E(End G),
although a slightly more complicated definition of E(End G) would be required.
Of course, the results of Section 4 have provided a description of the orthomodular
poset Fact A for any type of algebraic, topological or relational structure A.

6. Projections of normed groups

We continue our investigation of decompositions of groups and modules, but we
add a topological element to the mix. Specifically, we define a norm on a group
with operators, and show that a sensible definition can be made of a projection
operator on such a normed group. Ultimately, we will show that the projection
operators on a complete normed abelian group form a σ-complete orthomodular
poset with a full set of countably additive states. These are the basic requirements
of the quantum logic approach to quantum mechanics.

Definition 6.1. A norm on a group G with operators is a map ‖ · ‖ from G to the
reals which satisfies
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(6.1.1) ‖x‖ ≥ 0 for all x ∈ G,
(6.1.2) ‖x‖ = 0 if and only if x = 0,
(6.1.3) ‖x‖ = ‖ − x‖ for all x ∈ G,
(6.1.4) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ G.

A strong norm is a norm ‖ · ‖ which also satisfies

(6.1.5) ‖x+ y‖ = ‖y + x‖ for all x, y ∈ G.

Definition 6.2. An inner direct sum (G1, G2) ∈ Sums G is a projection of G if

(6.2.1) ‖g1 + g2‖2 = ‖g1‖2 + ‖g2‖2 for all g1 ∈ G1 and g2 ∈ G2.

The set of all projections on G is denoted by Proj G.

Lemma 6.3. Let (G1, G2) and (H1, H2) be projections on G.

(6.3.1) If G1 ⊆ H1, then H2 ⊆ G2.
(6.3.2) Projections are uniquely determined by their first components.

Proof. The second statement will follow trivially once we have established the first.
Assume (G1, G2) is a projection and G1 ⊆ H1. For any h2 in H2, we can find g1 in
G1 and g2 in G2 with h2 = g1 + g2 and

‖h2‖2 = ‖g1‖2 + ‖g2‖2.
Then g2 = −g1 + h2. But G1 ⊆ H1 and (H1, H2) is a projection, so

‖g2‖2 = ‖ − g1‖2 + ‖h2‖2.
This gives us that

‖g2‖2 = ‖ − g1‖2 + ‖g1‖2 + ‖g2‖2.
It follows that g1 = 0, and therefore h2 = g2 is an element of G2.

For an inner direct sum (G1, G2), each element g ∈ G has a unique representation
g = g1 + g2 where g1 ∈ G1 and g2 ∈ G2. Given an inner direct sum (G1, G2), we
defined µ1g = g1 if g = g1 + g2 with g1 ∈ G1 and g2 ∈ G2. A subtle point is
that the map µ1 depends not just on the summand G1, but on both summands
G1 and G2. This follows from the fact that the map µ1 completely determines the
inner direct sum (G1, G2) (see Theorem 5.4) and G1 may be a direct summand of
two different inner direct sums. If (G1, G2) is a projection of G we fare better, as
the inner direct sum (G1, G2) is completely determined by the summand G1. It is
therefore possible to recover the map µ1 from the summand G1. This is the basis
of the following definition.

Definition 6.4. Let A be a direct summand of some projection of G. Then by
(6.3.2), there is only one subalgebra B with (A,B) a projection of G. Each g ∈ G
can be represented in a unique fashion as the sum of an element a ∈ A and an
element b ∈ B. Therefore, we may define a map Â : G −→ A by setting Âg = a.
Note that Â is just the map µ1 of (5.2.1), and therefore Â ∈ E(End G). We define

ProjOpG = {Â : (A,B) ∈ ProjG}
and call such maps Â projection operators on G.

Lemma 6.5. Let (A,B) be a projection on G. Then

(6.5.1) ‖x‖2 = ‖Âx‖2 + ‖B̂x‖2 for all x ∈ G,

(6.5.2) ‖Âx‖ ≤ ‖x‖ for all x ∈ G,

(6.5.3) ‖Âx‖ = ‖x‖ if and only if x ∈ A,
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(6.5.4) ‖Âx‖ = 0 if and only if x ∈ B.

Proof. For each x ∈ G, the unique representation of x as the sum of an element of
A and an element of B is given by x = Âx + B̂x. These statements then follow
directly from the definition of a projection (6.2.1) and the fact that the norm of an
element is 0 if and only if the element is 0 (6.1.2).

Lemma 6.6. Let G be a normed group with operators. If (A1, B1) and (A2, B2)
are orthogonal projections whose join in Sums G is (A,B), then

(6.6.1) A = A1 ⊕A2 and B = B1 ∩B2,
(6.6.2) (A,B) is a projection,

(6.6.3) Â = Â1 + Â2 = Â2 + Â1,

(6.6.4) B̂ = B̂1B̂2 = B̂2B̂1.

Proof. The first assertion is a restatement of (5.6.3) For the second, if a ∈ A and
b ∈ B, there are elements a1 ∈ A1 and a2 ∈ A2 with a = a1 + a2. As (A1, B1) is
orthogonal to (A2, B2), we have that A1 ⊆ B2 and A2 ⊆ B1. Therefore a2 + b ∈ B1

and b ∈ B2, giving

‖a+ b‖2 = ‖a1 + (a2 + b)‖2 = ‖a1‖2 + ‖a2 + b‖2 = ‖a1‖2 + ‖a2‖2 + ‖b‖2.
Then as a2 ∈ B1 we have

‖a+ b‖2 = ‖a1 + a2‖2 + ‖b‖2 = ‖a‖2 + ‖b‖2.
So (A,B) is a projection. The third assertion is a restatement of (5.7.3). For the

fourth statement, note first that by Theorem 5.7 Â1Â2 = 0 = Â2Â1 since (A1, B1)

and (A2, B2) are orthogonal. Using the fact that B̂ = 1 − Â, B̂1 = 1 − Â1 and

B̂2 = 1− Â2, the fourth statement follows by a simple calculation.

Recall that a state on an orthomodular poset P is a map ϕ from P to the real
unit interval [0, 1] satisfying (i) ϕ(0) = 0, (ii) ϕ(1) = 1, and (iii) if x is orthogonal
to y, then ϕ(x⊕ y) = ϕ(x) + ϕ(y). If every countable pairwise orthogonal set has
a join in P , we call P a σ-complete orthomodular poset. A state ϕ on a σ-complete
orthomodular poset P is called countably additive if for every countable pairwise
orthogonal family of elements (xn)n∈N , the sum

∑∞
1 ϕ(xn) exists and is equal to

ϕ(x), where x is the join of (xn)n∈N in P . Finally, we say that a set S of states on
an orthomodular poset P is full if for all x 6≤ y in P there is a state ϕ in S with
ϕ(x) 6≤ ϕ(y). See [13, 19] for further details.

Theorem 6.7. Let G be a normed group with operators. Then Proj G is a sub-
orthomodular poset of Sums G. Further, {sg : 0 6= g ∈ G} is a full set of finitely
additive states on Proj G, where

sg(A,B) =
‖Âg‖2
‖g‖2 .

Proof. Clearly Proj G is closed under the orthocomplementation of Sums G, and
the closure of Proj G under orthogonal joins is given by (6.6.2). Therefore Proj G
is a sub-orthomodular poset of Sums G.

To verify that sg is a state, we first note that sg({0}, G) = 0 and sg(G, {0}) = 1.
Suppose that (A1, B1) is orthogonal to (A2, B2), with their join being (A,B). Then

sg(A1, B1) + sg(A2, B2) =
‖Â1g‖2 + ‖Â2g‖2

‖g‖2 =
‖Â1g + Â2g‖2

‖g‖2 = sg(A,B).
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Therefore each map sg, with g 6= 0, is a finitely additive state on Proj G. To
show that the collection of all such states is full, suppose (A1, B1) and (A2, B2) are
projections and that (A1, B1) 6≤ (A2, B2). Then by (6.3.1) we have that A1 6⊆ A2.
So there is a non-zero element g in A1 which is not in A2. It follows by Lemma 6.5
that sg(A1, B1) 6≤ sg(A2, B2).

To this point, we have made use only of algebraic properties of the norm. We
will see that a norm induces a metric space topology on a group just as with vector
spaces. Our strongest results will come by considering topological properties of
projections and projection operators.

Lemma 6.8. Let G be a normed group with operators.

(6.8.1) The map d(x, y) = ‖x− y‖ is a metric on G.
(6.8.2) Under the topology induced by this metric, the norm is continuous.
(6.8.3) If the norm is a strong norm, the group operations are continuous.

(6.8.4) If A is a direct summand of a projection, then Â is continuous.
(6.8.5) If A is a direct summand of a projection, then A is closed.

Proof. The only non-trivial part of the first statement is the triangle inequality,
which follows by (6.1.4) since

d(x, z) = ‖x− z‖ = ‖(x− y) + (y − z)‖ ≤ ‖x− y‖+ ‖y − z‖ = d(x, y) + d(y, z).

For the second statement, we must show that, for any Cauchy sequence {xn} in
G converging to x, {‖xn‖} converges to ‖x‖. Note first that

‖x‖ − ‖xn‖ ≤ ‖x− xn‖.

(This is derived from (6.1.4) using x = (x− xn) + xn.) Similarly

‖xn‖ − ‖x‖ ≤ ‖xn − x‖ = ‖x− xn‖.

(This is derived from (6.1.3) and (6.1.4) using xn = (xn − x) + x.) Therefore

d′(‖x‖, ‖xn‖) ≤ d(x, xn),

where d′ is the usual metric on the reals. As {xn} converges to x, it follows that
{‖xn‖} converges to ‖x‖.

For the third statement we must show that, for Cauchy sequences {xn} and {yn}
converging to x and y respectively, {−xn} converges to −x and {xn+yn} converges
to x+ y. That {−xn} converges to −x follows as

‖ − xn − (−x)‖ = ‖ − xn + x‖ = ‖x− xn‖

(note we have used the fact that ‖ · ‖ is a strong norm to obtain the last equality).
Similarly, we have that {xn + yn} converges to x+ y by considering

‖(xn + yn)− (x + y)‖ = ‖(xn + yn − y)− x‖ = ‖(−x+ xn) + (yn − y)‖

(we have again used the fact that ‖ · ‖ is a strong norm to obtain the last equality).
Now by applying (6.1.4) we have

‖(xn + yn)− (x+ y)‖ ≤ ‖ − x+ xn‖+ ‖yn − y‖ = ‖xn − x‖+ ‖yn − y‖

(we have again used the fact that ‖·‖ is a strong norm in obtaining the last equality),
and it follows that {xn + yn} converges to x+ y.
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For the fourth statement we must show that for a Cauchy sequence {xn} con-

verging to x, the sequence {Âxn} converges to Âx. This is given by the following

identity obtained using (6.5.2) and the fact that Â is an endomorphism:

‖Âxn − Âx‖ = ‖Â(xn − x)‖ ≤ ‖xn − x‖.

For the fifth statement, assume that (A,B) is a projection and {an} is a Cauchy

sequence of points in A which converges to a. As B̂ is continuous, {B̂an} converges

to B̂a. So by (6.5.4) B̂a = 0, which implies that a ∈ A.

Lemma 6.9. Let G be a normed group with operators and (An, Bn)n∈N be a count-
able family of pairwise orthogonal projections. For each element g ∈ G define
gn = Â1g + · · ·+ Âng and gn = B̂1B̂2 · · · B̂ng. Then

(6.9.1) gn + gn = g for each n,
(6.9.2) {gn} is a Cauchy sequence,
(6.9.3) {gn} is a Cauchy sequence,
(6.9.4) If {gn} converges, then lim gn ∈

⋂
N Bn.

Proof. The first statement follows by Lemma 6.6. For the second statement, note
first that by (6.6.3) the elements Â1g, Â2g, . . . all commute. This implies that

gn − gm = Âm+1g + · · ·+ Âng for all m < n. But by Lemma 6.6

‖g‖2 = ‖gn‖2 + ‖gn‖2,

since (A1, B1)⊕ · · · ⊕ (An, Bn) is a projection. But

‖g‖2 ≥ ‖gn‖2 =
n∑
i=1

‖Âig‖2.

This implies that
∑∞

1 ‖Âig‖2 converges. Then, as

‖gn − gm‖2 =
n∑

i=m+1

‖Âig‖2,

it follows that the sequence {gn} is Cauchy.
To verify the third statement, note first that gn − gm = −gn + gm for all m,n.

This is easily derived from the fact that gn + gn = gm + gm. As all the elements
Â1g, Â2g, . . . commute, it follows that −gn + gm = −(gn − gm). Therefore

‖gn − gm‖ = ‖gn − gm‖,

giving that {gn} is Cauchy. We now consider the final statement. By (6.5.3), it is

enough to show that B̂k(lim gn) = lim gn for each k. By (6.6.4) and the fact that B̂k
is idempotent, it follows that B̂kgn = gn for all n ≥ k. Therefore lim B̂kgn = lim gn,
and our result follows from the continuity of B̂k.

For our strongest results we will consider normed groups with operators which are
complete under the metric induced by the norm and have their group operations as
well as their operators continuous. In view of (6.8.3), any complete strongly normed
group with continuous operators, and therefore any complete normed abelian group
with continuous operators, will satisfy these conditions. In particular, these results
apply to any complete normed abelian group (without operators).
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Theorem 6.10. Let G be a complete normed group with operators whose group op-
erations and operators are continuous. Then Proj G is an orthocomplete relational
orthomodular poset with a full set of countably additive states.

Proof. By Theorem 6.7 we have that Proj G is a relational orthomodular poset and
that {sg : 0 6= g ∈ G} is a full set of finitely additive states. We have only to show
that Proj G is orthogonally complete and that these states are countably additive.

We begin by showing that Proj G is orthogonally complete. Let (Ai, Bi)i∈I
be a pairwise orthogonal family of projections. Define A to be the closure of the
subalgebra generated by

⋃
I Ai, and B to be

⋂
I Bi. We will show that (A,B) is

a projection. It will then follow from (6.8.5) that (A,B) is the join of the family
(Ai, Bi)i∈I .

Note first that A and B are subalgebras of G. That A is a subalgebra follows
from the continuity of the group operations and operators, and it is trivial that B
is a subalgebra.

Next, we show that A ∩ B = {0}. If a ∈ A, then there is a Cauchy sequence
{an} converging to a with each an in the subalgebra generated by

⋃
I Ai. As the

subalgebra generated by
⋃
I Ai consists of all finite sums of elements of

⋃
I Ai, we

may assume there is a countable subset i1, i2, . . . of I with an ∈ Ai1 ⊕ · · · ⊕ Ain
for each n. If a is also in B, then as (Ai1 , Bi1)⊕ · · · ⊕ (Ain , Bin) is a projection, it
follows that ‖a − an‖2 = ‖a‖2 + ‖an‖2. As the sequence {an} converges to a, we
must conclude that ‖a‖2 = 0 and therefore a = 0.

We continue towards our goal of showing that (A,B) is a projection by showing
that (A,B) is an inner direct sum. We must show that each g ∈ G has a unique
representation g = a+ b with a ∈ A and b ∈ B, and in this representation a and b
commute. Note that

‖g‖2 ≥ ‖Âi1g‖2 + · · ·+ ‖Âing‖2

for any i1, . . . , in in I. It follows that {i ∈ I : Âig 6= 0} is at most countable. Let

i1, i2, . . . be an enumeration of this set. Defining gn = Âi1g + · · ·+ Âing and gn =

B̂i1B̂i2 · · · B̂ing, we have by Lemma 6.9 that {gn} and {gn} are Cauchy sequences.
As G is complete these sequences converge, say a = lim gn and b = lim gn. Clearly
a ∈ A. By (6.9.4), b ∈ Bi for each i with Âig 6= 0. But if Âjg = 0, then B̂jg = g.

Then using the fact that B̂j commutes with each B̂i (6.6.4), we have that B̂jgn = gn
for each n. The continuity of B̂j then implies that B̂jb = b, so b ∈ Bj . We have
shown that a ∈ A and b ∈ B. The continuity of the group operations and the fact
that gn + gn = gn + gn = g then imply

a+ b = lim gn + lim gn = lim(gn + gn) = g

and
b+ a = lim gn + lim gn = lim(gn + gn) = g.

Finally, the uniqueness of the representation follows from the fact that A∩B = {0}.
So (A,B) is an inner direct sum.

To show that (A,B) is a projection, it is sufficient to show that

‖g‖2 = ‖a‖2 + ‖b‖2,
where g = a+ b with a ∈ A and b ∈ B. Using the continuity of the norm and the
fact that

‖g‖2 = ‖gn‖2 + ‖gn‖2,
the result follows easily.
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To conclude the proof of the theorem, we have only to show that the state sg
is countably additive. Suppose that (An, Bn)n∈N is a countable family of pairwise
orthogonal projections whose join is (A,B). As we have seen,

Âg = lim
n→∞

(Â1g + · · ·+ Âng).

It follows from the continuity of the norm that

‖Âg‖2 = lim
n→∞

‖Â1g + · · ·+ Âng‖2 = lim
n→∞

(‖Â1g‖2 + · · ·+ ‖Âng‖2) =
∞∑
n=1

‖Âng‖2.

Therefore sg(A,B) =
∑∞

1 sg(An, Bn).

Remark 6.11. It seems that we have a sensible definition of projection operators for
any normed group G with operators. Special cases of normed groups with operators
are of course Hilbert spaces. If H is a real or complex Hilbert space, we claim that
Proj H consists of exactly those pairs (A,A⊥) such that A is a closed subspace of
H. It is easy enough to check that any such pair is in Proj H. But if (A,B) is in
Proj H, then A is a closed subspace of H, and as projections are determined by
their first components (6.3.2), it follows that B = A⊥.

Remark 6.12. We have defined projections to be decompositions (A,B) such that

f(‖a+ b‖) = f(‖a‖) + f(‖b‖) for every a in A and b in B,

where f(x) = x2. Our proofs have only used the properties that (i) f(0) = 0; (ii) f
is strictly increasing; and (iii) f is continuous. For any such function f , we could
define Projf G. All of our results are valid in this more general setting.

7. Properties of relational orthomodular posets

In this section, we will show that there are orthomodular posets which are not
relational orthomodular posets. We prove the stronger result that there is a finite
orthomodular poset P which has no mapping into a non-trivial relational ortho-
modular poset which preserves orthocomplementation and orthogonal joins. We
further show that this orthomodular poset P has no mapping into a non-trivial
orthomodular lattice which preserves orthocomplementation and orthogonal joins.
Surprisingly, it seems to have been an open question whether every orthomodular
poset could be embedded into an orthomodular lattice.

Before we reach the main results of this section, we must prove a few technical
details about relation algebras. It will be convenient to introduce some new notation
to avoid repeating the same phrases endlessly.

Definition 7.1. We define a partial binary operation ;̂ on a relation algebra R.
The operation ;̂ is to be defined for all pairs of proper equivalence elements p, q for
which p; q = q; p, and for such a pair, p̂; q is defined to be p; q. Thus, for elements
p and q of a relation algebra R, the notation p̂; q is understood to mean that p and
q are proper equivalence elements with p; q equal to q; p, and that the element p̂; q
is equal to p; q. Note that if p̂; q is defined, then p̂; q is also a proper equivalence
element of R.

Lemma 7.2. Let R be a relation algebra with r̂; t1, r̂; t2, r̂; q and ŝ; p.

(7.2.1) If t1, t2 ≤ r′, where r′ ∈ R(1) with r·r′ = 1′, then (r̂;t1)·(r̂;t2) = r̂;(t1 ·t2).
(7.2.2) If p ≤ q, r ≤ s and s · q = 1′, then (r̂; q) · (ŝ; p) = r̂; p.
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Proof. To verify the first statement, let a = (r̂;t1)·(r̂;t2) and b = r′ and c = (t1·t2); r.
Note that c ≤ a and that a is a proper equivalence element, so we may apply (2.2.1)
to the elements a, b and c. This gives us that a·(b; c) = (a·b); c. Noting that a ≤ b; c,
we have that a · (b; c) = a. By applying (2.2.4) we have that b · (tî; r) equals ti for
i = 1, 2. It follows that a · b equals t1 · t2 and therefore (a · b); c = c. Having shown
that a = c, it remains only to show that (t1 · t2); r is equal to r; (t1 · t2). This follows
as (t1 · t2); r is equal to the proper equivalence element a.

To verify the second statement, let a = (r̂; q) · (ŝ;p) and b = s and c = r; p. Note
that c ≤ a and that a is a proper equivalence element, so we may apply (2.2.1) to
the elements a, b and c. This gives us that a · (b; c) = (a · b); c. Noting that a ≤ b; c,
we have that a · (b; c) = a. By applying (2.2.4) we have that s · (r̂; q) = r. It follows
that (a · b); c = c. That r; p = p; r follows as r; p is equal to the proper equivalence
element a.

The following lemma states a few well-known facts about the arithmetic of or-
thomodular lattices [10]. For elements a, b in an orthomodular lattice L, we use the
notation a⊕ b to mean both that a ≤ b′ and that a⊕ b is the join of a and b.

Lemma 7.3. Let L be an orthomodular lattice, with r⊕ t1, r⊕ t2, r⊕ q and s⊕ p.

(7.3.1) (r ⊕ t1) · (r ⊕ t2) = r ⊕ (t1 · t2).
(7.3.2) If p ≤ q, r ≤ s and s · q = 0, then (r ⊕ q) · (s⊕ p) = r ⊕ p.

For the remainder of this section, we shall be concerned with the orthomodular
posets of Figure 1 and Figure 2 below. We shall call the orthomodular poset of
Figure 1 the orthomodular kite and the orthomodular poset of Figure 2 the double
kite. These diagrams are called Greechie diagrams, and a complete account of
Greechie diagrams is given in [13]. We review a few basic facts.

The dots in the diagrams represent atoms, and orthogonal atoms are joined by a
straight line. Let x and y be orthogonal atoms, with z the third element in the line
containing x and y. Then for an atom w, we have w ≤ x⊕ y if and only if w 6= z
and w and z are joined by a straight line. As each of these diagrams contains a
four-loop, and neither contains a triangle, Greechie’s loop lemma [9] implies that
both these diagrams represent orthomodular posets which are not orthomodular
lattices.

Definition 7.4. Let R be a relation algebra and ψ a map from an orthomodular
poset P to R(2) which preserves orthocomplementation and finite orthogonal joins.
As elements of R(2) are ordered pairs of proper equivalence elements of R, we can
define maps ψ1 and ψ2 from P into R(1) by setting

(7.4.1) ψ1(x) = a and ψ2(x) = b if ψ(x) = (a, b).

Note that if x and y are orthogonal elements of P , then

(7.4.2) ψ1(x⊕ y) = ψ1(x)̂; ψ1(y).

Lemma 7.5. Let R be a relation algebra. If ψ is a map from the orthomodular kite
of Figure 1 to R(2) which preserves orthocomplementation and finite orthogonal
joins, and φ is a map from the double kite of Figure 2 to R(2) which preserves
orthocomplementation and finite orthogonal joins, then

(7.5.1) ψ1(a) ≤ ψ1(c),
(7.5.2) φ(a) = 0.
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Proof. Note first that ψ is necessarily order preserving, as x ≤ z in P implies the
existence of y with x⊕ y = z. From the definition of the partial ordering in R(2),
we have that ψ1 is also order preserving. To improve the legibility of the following
expressions, we shall temporarily adopt the convention of writing ψ1(x) as x1 and
ψ2(x) as x2.

As a lies beneath each of b⊕c, b⊕d, c⊕e and d⊕f , we have that a1 lies beneath
each of (b⊕ c)1, etc. It follows from (7.4.2) that (b⊕ c)1 = b1̂; c1. So

a1 ≤ (b1̂; c1) · (b1̂; d1) · (c1 ;̂ e1) · (d1 ;̂ f1).

As c is orthogonal to b, we have that c1 ≤ b2, and similarly d1 ≤ b2. Then as b2 is
a proper equivalence element with b1 · b2 = 1′, we may apply (7.2.1) to obtain that
(b1̂; c1) · (b1̂; d1) is equal to b1̂; (c1 · d1). Applying this idea several times to the last
inequality, we obtain

a1 ≤ [b1̂; (c1 · d1)] · [c1̂; (b1 · e1)] · [d1̂; (b1 · f1)].

Then as b1 · e1 ≤ b1 and c1 · d1 ≤ c1 and b1 · c1 = 1′ (since c1 ≤ b2), we may apply
(7.2.2) to obtain that

[b1̂; (c1 · d1)] · [c1̂; (b1 · e1)] = (c1 · d1)̂; (b1 · e1).

Applying this idea twice to the last inequality, we obtain

a1 ≤ [(c1 · d1)̂; (b1 · e1)] · [(c1 · d1)̂; (b1 · f1)].

However, b1 · e1 ≤ b1, and b1 · f1 ≤ b1 and b1 is a proper equivalence element with
b1 · (c1 · d1) = 1′ (since c1 ≤ b2). Therefore we may apply (7.2.1) to obtain

a1 ≤ (c1 · d1)̂; (b1 · e1 · f1).

But b1 · e1 · f1 = 1′ (since f1 ≤ e2), and the first statement is established.
For the second statement, we may apply (7.5.1) twice to obtain that φ1(a) ≤

φ1(c) and φ1(a) ≤ φ1(h). But c and h are orthogonal, and therefore φ1(a) = 1′.
But the only element of R(2) having 1′ as its first component is 0. Therefore
φ(a) = 0.
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Lemma 7.6. Let L be an orthomodular lattice. If ψ is a map from the orthomodu-
lar kite of Figure 1 to L which preserves orthocomplementation and finite orthogonal
joins, and φ is a map from the double kite of Figure 2 to L which preserves ortho-
complementation and finite orthogonal joins, then

(7.6.1) ψ(a) ≤ ψ(c),
(7.6.2) φ(a) = 0.

Proof. The proof is similar to that of Lemma 7.6, replacing ;̂ with ⊕ and using
(7.3.1) and (7.3.2) in place of (7.2.1) and (7.2.2) respectively.

Theorem 7.7. There is a finite orthomodular poset P with the following proper-
ties: there is no map from P into a non-trivial relational orthomodular poset which
preserves orthocomplementation and orthogonal joins, and there is no map from P
into a non-trivial orthomodular lattice which preserves orthocomplementation and
orthogonal joins.

Proof. Let P be the orthomodular poset whose Greechie diagram is formed by
taking three disjoint copies of the double kite, with middle elements a, a′ and a′′,
and adding a line connecting a, a′ and a′′. If R is a relation algebra and φ is a map
from P to R(2) which preserves orthocomplementation and orthogonal joins, then
by (7.5.2) we have that φ(a), φ(a′) and φ(a′′) are all equal to 0. But a, a′ and a′′

are pairwise orthogonal, and their join is 1. As φ preserves orthogonal joins, we
have that the join of φ(a), φ(a′) and φ(a′′) in R(2) must also be 1. Therefore in
R(2), 0 is equal to 1, so R(2) is the trivial orthomodular poset. The corresponding
result for orthomodular lattices clearly follows along similar lines, using (7.6.2) in
place of (7.5.2).

One can present a superficial argument that the orthomodular kite depicted in
Figure 1 could not represent the events of any quantum mechanical system. Suppose
that the event labeled a were to occur. We claim that this implies that the event c
must occur. We argue by contradiction. Suppose that the event c does not occur.
Then as b⊕c ≥ a, we have that b must occur, and therefore d does not occur. Then
as d⊕ f ≥ a, we can conclude that the event f must occur. But c⊕ e ≥ a, so the
event e must also occur. But it is not possible to have two orthogonal events both
occur.

There are many holes in this argument, but it may contain a kernel of truth.
The classical description of quantum mechanics is given by the orthomodular lat-
tice of projection operators of a Hilbert space. As we have seen in Theorem 7.7,
the orthomodular poset of Figure 1 cannot be embedded into this (or any other)
orthomodular lattice.

8. Conclusions

I believe that the solution of the following problems would be a significant step
in developing the theory of relational orthomodular posets.

Problem 1. Describe those categories C for which one can construct an orthomod-
ular poset from the decompositions of an object A in C.

It is easily seen that some restrictions must be placed on C by considering a poset
P to be the category C. Define a category C to be honest if (i) C is closed under
finite (including empty) products and (ii) for every product diagram (f, g, h) in C,
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the diagram (f×h, g×h, π2, π2) is a pushout. All the structures we have considered
in this paper form honest categories. As a partial solution to Problem 1, I have
been able to show that the decompositions of any object in an honest category form
an orthoalgebra [8].

Problem 2. Do the projections of a complete strongly normed group G form an
orthomodular lattice ?

This seems to be related to the following question. If Â and B̂ are projection
operators on G, is the sequence {(ÂB̂)ng} a Cauchy sequence for each g ∈ G ?

Problem 3. Is every orthomodular lattice a relational orthomodular poset ?

Note that by Remark 4.13, every modular ortholattice is a relational orthomodu-
lar poset. Also, the argument used to produce an orthomodular poset P which was
not relational transferred nearly verbatim to show that P could not be embedded
into an orthomodular lattice.

Problem 4. Do decompositions provide a link between the quantum logic ap-
proach to quantum mechanics and the many world approach to quantum mechanics
[6]?

In conclusion, I would like to thank Bjarni Jónsson and Michael Roddy. B.
Jónsson pointed out the similarity between orthoalgebras and the idempotents of
the endomorphism ring of an algebra with zero. His suggestion was the starting
point of this investigation. A series of discussions with Michael Roddy was the
basis of the results of Section 7.
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