Noncomplete linear systems on abelian varieties
HTML articles powered by AMS MathViewer
- by Christina Birkenhake
- Trans. Amer. Math. Soc. 348 (1996), 1885-1908
- DOI: https://doi.org/10.1090/S0002-9947-96-01570-X
- PDF | Request permission
Abstract:
Let $X$ be a smooth projective variety. Every embedding $X\hookrightarrow \mathbb {P}_N$ is the linear projection of an embedding defined by a complete linear system. In this paper the geometry of such not necessarily complete embeddings is investigated in the special case of abelian varieites. To be more precise, the properties $N_p$ of complete embeddings are extended to arbitrary embeddings, and criteria for these properties to be satisfied are elaborated. These results are applied to abelian varieties. The main result is: Let $(X,L)$ be a general polarized abelian variety of type $(d_1,\dots ,d_g)$ and $p\ge 1$, $n\ge 2p+2$ such that $nd_g\ge 6$ is even, and $c\le n^{g-1}$. The general subvector space $V\subseteq H^0(L^n)$ of codimension $c$ satisfies the property $N_p$.References
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932, DOI 10.1007/978-1-4757-5323-3
- Ch. Birkenhake: Linear Systems on Projective spaces, Manuscripta Math. 88 (1995) 177–184.
- Herbert Lange and Christina Birkenhake, Complex abelian varieties, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302, Springer-Verlag, Berlin, 1992. MR 1217487, DOI 10.1007/978-3-662-02788-2
- Mark L. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19 (1984), no. 1, 125–171. MR 739785
- Mark L. Green, Koszul cohomology and geometry, Lectures on Riemann surfaces (Trieste, 1987) World Sci. Publ., Teaneck, NJ, 1989, pp. 177–200. MR 1082354
- M. Green, R. Lazarsfeld: Some results on the syzygies of finite sets and algebraic curves, preprint
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- F. Hirzebruch, Topological methods in algebraic geometry, Third enlarged edition, Die Grundlehren der mathematischen Wissenschaften, Band 131, Springer-Verlag New York, Inc., New York, 1966. New appendix and translation from the second German edition by R. L. E. Schwarzenberger, with an additional section by A. Borel. MR 0202713
- G. Kempf: The projective coordinate ring of abelian varieties, in: Algebraic Analysis, Geometry and Number Theory (ed. by J. I. Igusa), The Johns Hopkins Press (1989), 225 – 236
- Robert Lazarsfeld, A sampling of vector bundle techniques in the study of linear series, Lectures on Riemann surfaces (Trieste, 1987) World Sci. Publ., Teaneck, NJ, 1989, pp. 500–559. MR 1082360
- R. Lazarsfeld: Syzygies of Abelian Varieties, private notes (1993)
- Hideyuki Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR 575344
- David Mumford, Varieties defined by quadratic equations, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969) Edizioni Cremonese, Rome, 1970, pp. 29–100. MR 0282975
Bibliographic Information
- Christina Birkenhake
- Affiliation: Mathematisches Institut, Universität Erlangen Bismarckstrasse 1$\frac 12$, D-91054 Erlangen, Germany
- Email: Birkenhake@mi.uni-erlangen.de
- Received by editor(s): June 9, 1995
- Additional Notes: Supported by EC Contract No. CHRXCT 940557
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 1885-1908
- MSC (1991): Primary 14C20, 14K05
- DOI: https://doi.org/10.1090/S0002-9947-96-01570-X
- MathSciNet review: 1340170