Noncomplete linear systems on abelian varieties

Author:
Christina Birkenhake

Journal:
Trans. Amer. Math. Soc. **348** (1996), 1885-1908

MSC (1991):
Primary 14C20, 14K05

DOI:
https://doi.org/10.1090/S0002-9947-96-01570-X

MathSciNet review:
1340170

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a smooth projective variety. Every embedding is the linear projection of an embedding defined by a complete linear system. In this paper the geometry of such not necessarily complete embeddings is investigated in the special case of abelian varieites. To be more precise, the properties of complete embeddings are extended to arbitrary embeddings, and criteria for these properties to be satisfied are elaborated. These results are applied to abelian varieties. The main result is: *Let be a general polarized abelian variety of type and , such that is even, and . The general subvector space of codimension satisfies the property .*

**[ACGH]**E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris,*Geometry of algebraic curves. Vol. I*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR**770932****[B]**Ch. Birkenhake: Linear Systems on Projective spaces, Manuscripta Math. 88 (1995) 177--184.**[CAV]**Herbert Lange and Christina Birkenhake,*Complex abelian varieties*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302, Springer-Verlag, Berlin, 1992. MR**1217487****[G1]**Mark L. Green,*Koszul cohomology and the geometry of projective varieties*, J. Differential Geom.**19**(1984), no. 1, 125–171. MR**739785****[G2]**Mark L. Green,*Koszul cohomology and geometry*, Lectures on Riemann surfaces (Trieste, 1987) World Sci. Publ., Teaneck, NJ, 1989, pp. 177–200. MR**1082354****[G--L]**M. Green, R. Lazarsfeld: Some results on the syzygies of finite sets and algebraic curves, preprint**[Ha]**Robin Hartshorne,*Algebraic geometry*, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR**0463157****[Hi]**F. Hirzebruch,*Topological methods in algebraic geometry*, Third enlarged edition. New appendix and translation from the second German edition by R. L. E. Schwarzenberger, with an additional section by A. Borel. Die Grundlehren der Mathematischen Wissenschaften, Band 131, Springer-Verlag New York, Inc., New York, 1966. MR**0202713****[K]**G. Kempf: The projective coordinate ring of abelian varieties, in: Algebraic Analysis, Geometry and Number Theory (ed. by J. I. Igusa), The Johns Hopkins Press (1989), 225 -- 236**[L1]**Robert Lazarsfeld,*A sampling of vector bundle techniques in the study of linear series*, Lectures on Riemann surfaces (Trieste, 1987) World Sci. Publ., Teaneck, NJ, 1989, pp. 500–559. MR**1082360****[L2]**R. Lazarsfeld: Syzygies of Abelian Varieties, private notes (1993)**[Ma]**Hideyuki Matsumura,*Commutative algebra*, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR**575344****[M]**David Mumford,*Varieties defined by quadratic equations*, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969) Edizioni Cremonese, Rome, 1970, pp. 29–100. MR**0282975**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
14C20,
14K05

Retrieve articles in all journals with MSC (1991): 14C20, 14K05

Additional Information

**Christina Birkenhake**

Affiliation:
Mathematisches Institut, Universität Erlangen Bismarckstrasse 1$\frac12$, D-91054 Erlangen, Germany

Email:
Birkenhake@mi.uni-erlangen.de

DOI:
https://doi.org/10.1090/S0002-9947-96-01570-X

Received by editor(s):
June 9, 1995

Additional Notes:
Supported by EC Contract No. CHRXCT 940557

Article copyright:
© Copyright 1996
American Mathematical Society