Regularity of Lorentzian Busemann Functions
HTML articles powered by AMS MathViewer
- by Gregory J. Galloway and Arnaldo Horta
- Trans. Amer. Math. Soc. 348 (1996), 2063-2084
- DOI: https://doi.org/10.1090/S0002-9947-96-01587-5
- PDF | Request permission
Abstract:
A general theory of regularity for Lorentzian Busemann functions in future timelike geodesically complete spacetimes is presented. This treatment simplifies and extends the local regularity developed by Eschenburg, Galloway and Newman to prove the Lorentzian splitting theorem. Criteria for global regularity are obtained and used to improve results in the literature pertaining to a conjecture of Bartnik.References
- L. Andersson and R. Howard, Comparison and rigidity theorems in semi-Riemannian geometry, preprint.
- Robert Bartnik, Regularity of variational maximal surfaces, Acta Math. 161 (1988), no. 3-4, 145–181. MR 971795, DOI 10.1007/BF02392297
- Robert Bartnik, Remarks on cosmological spacetimes and constant mean curvature surfaces, Comm. Math. Phys. 117 (1988), no. 4, 615–624. MR 953823
- John K. Beem and Paul E. Ehrlich, Singularities, incompleteness and the Lorentzian distance function, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 1, 161–178. MR 510409, DOI 10.1017/S0305004100055584
- John K. Beem and Paul E. Ehrlich, Global Lorentzian geometry, Monographs and Textbooks in Pure and Applied Mathematics, vol. 67, Marcel Dekker, Inc., New York, 1981. MR 619853
- John K. Beem, Paul E. Ehrlich, Steen Markvorsen, and Gregory J. Galloway, A Toponogov splitting theorem for Lorentzian manifolds, Global differential geometry and global analysis 1984 (Berlin, 1984) Lecture Notes in Math., vol. 1156, Springer, Berlin, 1985, pp. 1–13. MR 824057, DOI 10.1007/BFb0075081
- Robert Budic, James Isenberg, Lee Lindblom, and Philip B. Yasskin, On determination of Cauchy surfaces from intrinsic properties, Comm. Math. Phys. 61 (1978), no. 1, 87–95. MR 489695
- J.-H. Eschenburg, Comparison theorems and hypersurfaces, Manuscripta Math. 59 (1987), no. 3, 295–323. MR 909847, DOI 10.1007/BF01174796
- J.-H. Eschenburg, The splitting theorem for space-times with strong energy condition, J. Differential Geom. 27 (1988), no. 3, 477–491. MR 940115
- J.-H. Eschenburg, Maximum principle for hypersurfaces, Manuscripta Math. 64 (1989), no. 1, 55–75. MR 994381, DOI 10.1007/BF01182085
- J.-H. Eschenburg and G. J. Galloway, Lines in space-times, Comm. Math. Phys. 148 (1992), no. 1, 209–216. MR 1178143
- Jost Eschenburg and Ernst Heintze, An elementary proof of the Cheeger-Gromoll splitting theorem, Ann. Global Anal. Geom. 2 (1984), no. 2, 141–151. MR 777905, DOI 10.1007/BF01876506
- Gregory J. Galloway, Splitting theorems for spatially closed space-times, Comm. Math. Phys. 96 (1984), no. 4, 423–429. MR 775039
- Gregory J. Galloway, Some results on Cauchy surface criteria in Lorentzian geometry, Illinois J. Math. 29 (1985), no. 1, 1–10. MR 769754
- Gregory J. Galloway, Curvature, causality and completeness in space-times with causally complete spacelike slices, Math. Proc. Cambridge Philos. Soc. 99 (1986), no. 2, 367–375. MR 817678, DOI 10.1017/S0305004100064288
- Gregory J. Galloway, The Lorentzian splitting theorem without the completeness assumption, J. Differential Geom. 29 (1989), no. 2, 373–387. MR 982181
- Gregory J. Galloway, Some connections between global hyperbolicity and geodesic completeness, J. Geom. Phys. 6 (1989), no. 1, 127–141. MR 1027300, DOI 10.1016/0393-0440(89)90004-1
- Gregory J. Galloway, The Lorentzian version of the Cheeger-Gromoll splitting theorem and its application to general relativity, Differential geometry: geometry in mathematical physics and related topics (Los Angeles, CA, 1990) Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 249–257. MR 1216543, DOI 10.1090/pspum/054.2/1216543
- Claus Gerhardt, $H$-surfaces in Lorentzian manifolds, Comm. Math. Phys. 89 (1983), no. 4, 523–553. MR 713684
- R. Geroch, Singularities in closed universes, Phys. Rev. Lett. 17 (1966), 445–447.
- Robert Geroch, Singularities, Relativity (Proc. Conf. Midwest, Cincinnati, Ohio, 1969) Plenum, New York, 1970, pp. 259–291. MR 0366342
- S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, No. 1, Cambridge University Press, London-New York, 1973. MR 0424186
- Richard P. A. C. Newman, A proof of the splitting conjecture of S.-T. Yau, J. Differential Geom. 31 (1990), no. 1, 163–184. MR 1030669
- Barrett O’Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, vol. 103, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With applications to relativity. MR 719023
- Roger Penrose, Techniques of differential topology in relativity, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 7, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1972. MR 0469146
- Hans-Jürgen Seifert, Global connectivity by timelike geodesics, Z. Naturforsch. 22a (1967), 1356–1360. MR 0225556
- Shing Tung Yau, Problem section, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 669–706. MR 645762
Bibliographic Information
- Gregory J. Galloway
- Affiliation: Department of Mathematics, University of Miami, Coral Gables, Florida 33124
- MR Author ID: 189210
- Email: galloway@math.miami.edu
- Arnaldo Horta
- Affiliation: National Security Agency, Fort Meade, Maryland 20755-6000
- Email: ahorta@ix.netcom.com
- Received by editor(s): September 9, 1994
- Additional Notes: The first author was partially supported by NSF grant DMS-9204372.
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 2063-2084
- MSC (1991): Primary 53C50
- DOI: https://doi.org/10.1090/S0002-9947-96-01587-5
- MathSciNet review: 1348150