Hyperfinite transversal theory. II
HTML articles powered by AMS MathViewer
- by Bosko Zivaljevic
- Trans. Amer. Math. Soc. 348 (1996), 1921-1938
- DOI: https://doi.org/10.1090/S0002-9947-96-01596-6
- PDF | Request permission
Abstract:
We continue the investigation of validity of Hall’s theorem in the case of the Loeb space $L({\mathcal {H}})$ of an internal, uniformly distributed, hyperfinite measure space ${\mathcal {H}}=(\Omega ,{\mathcal {A}},\mu )$ initiated in1992 by the author. Some new classes of graphs are introduced for which the measure theoretic version of Hall’s theorem still holds.References
- Zvi Artstein, Distributions of random sets and random selections, Israel J. Math. 46 (1983), no. 4, 313–324. MR 730347, DOI 10.1007/BF02762891
- L. E. Bertossi, Standard capacities with nonstandard pavings, Notas Soc. Mat. Chile 5 (1986), no. 2, 1–6. MR 881729
- B. Bollobás and N. Th. Varopoulos, Representation of systems of measurable sets, Math. Proc. Cambridge Philos. Soc. 78 (1975), no. 2, 323–325. MR 379781, DOI 10.1017/S0305004100051756
- D. W. Bressler and M. Sion, The current theory of analytic sets, Canadian J. Math. 16 (1964), 207–230. MR 163854, DOI 10.4153/CJM-1964-021-7
- P. Hall, On Representatives of Subsets, J. London Math. Soc. 10 (1935), 26-30.
- C. Ward Henson, Analytic sets, Baire sets and the standard part map, Canadian J. Math. 31 (1979), no. 3, 663–672. MR 536371, DOI 10.4153/CJM-1979-066-0
- C. Ward Henson and David Ross, Analytic mappings on hyperfinite sets, Proc. Amer. Math. Soc. 118 (1993), no. 2, 587–596. MR 1126195, DOI 10.1090/S0002-9939-1993-1126195-9
- Albert E. Hurd and Peter A. Loeb, An introduction to nonstandard real analysis, Pure and Applied Mathematics, vol. 118, Academic Press, Inc., Orlando, FL, 1985. MR 806135
- H. Jerome Keisler, Kenneth Kunen, Arnold Miller, and Steven Leth, Descriptive set theory over hyperfinite sets, J. Symbolic Logic 54 (1989), no. 4, 1167–1180. MR 1026596, DOI 10.2307/2274812
- Peter A. Loeb, Conversion from nonstandard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113–122. MR 390154, DOI 10.1090/S0002-9947-1975-0390154-8
- R. Daniel Mauldin, One-to-one selections—marriage theorems, Amer. J. Math. 104 (1982), no. 4, 823–828. MR 667537, DOI 10.2307/2374207
- Paul-André Meyer, Probabilités et potentiel, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XIV. Actualités Scientifiques et Industrielles, No. 1318, Hermann, Paris, 1966 (French). MR 0205287
- C. St. J. A. Nash-Williams, Unexplored and semi-explored territories in graph theory, New directions in the theory of graphs (Proc. Third Ann Arbor Conf., Univ. Michigan, Ann Arbor, Mich., 1971) Academic Press, New York, 1973, pp. 149–186. MR 0387097
- David Ross, Lifting theorems in nonstandard measure theory, Proc. Amer. Math. Soc. 109 (1990), no. 3, 809–822. MR 1019753, DOI 10.1090/S0002-9939-1990-1019753-0
- K. Schilling and B. Živaljević, Louveau’s Theorem for the Descriptive Set Theory of Internal Sets, (submitted).
- K. D. Stroyan and José Manuel Bayod, Foundations of infinitesimal stochastic analysis, Studies in Logic and the Foundations of Mathematics, vol. 119, North-Holland Publishing Co., Amsterdam, 1986. MR 849100
- Boško Živaljević, Hyperfinite transversal theory, Trans. Amer. Math. Soc. 330 (1992), no. 1, 371–399. MR 1033237, DOI 10.1090/S0002-9947-1992-1033237-1
- Boško Živaljević, Rado’s theorem for the Loeb space of an internal $*$-finitely additive measure space, Proc. Amer. Math. Soc. 112 (1991), no. 1, 203–207. MR 1056688, DOI 10.1090/S0002-9939-1991-1056688-2
- Boško Živaljević, The structure of graphs all of whose $Y$-sections are internal sets, J. Symbolic Logic 56 (1991), no. 1, 50–66. MR 1131729, DOI 10.2307/2274903
- Boško Živaljević, Graphs with $\Pi ^0_1(\kappa )\ Y$-sections, Arch. Math. Logic 32 (1993), no. 4, 259–273. MR 1213061, DOI 10.1007/BF01387406
- —, $\Pi _{1}^{1}$ functions are almost internal, Trans. Amer. Math. Soc. 347 (1995), 2621–2632.
- —, $\Pi _{1}^{1}$ sets of infinite Loeb measure, Proc. Amer. Math. Soc. (to appear).
Bibliographic Information
- Bosko Zivaljevic
- Affiliation: Department of Computer Science, The University of Illinois at Urbana - Champaign, Urbana, Illinois 61801
- Address at time of publication: International Paper Company, Process Management Computer, 3101 International Drive East, Mobile, Alabama 36606
- Email: zivaljev@cs.uiuc.edu
- Received by editor(s): August 7, 1994
- Received by editor(s) in revised form: June 5, 1995
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 1921-1938
- MSC (1991): Primary 03H04, 03E15; Secondary 04A15, 05C99, 28E05, 54H05
- DOI: https://doi.org/10.1090/S0002-9947-96-01596-6
- MathSciNet review: 1348159