## Hyperfinite transversal theory. II

HTML articles powered by AMS MathViewer

- by Bosko Zivaljevic PDF
- Trans. Amer. Math. Soc.
**348**(1996), 1921-1938 Request permission

## Abstract:

We continue the investigation of validity of Hall’s theorem in the case of the Loeb space $L({\mathcal {H}})$ of an internal, uniformly distributed, hyperfinite measure space ${\mathcal {H}}=(\Omega ,{\mathcal {A}},\mu )$ initiated in1992 by the author. Some new classes of graphs are introduced for which the measure theoretic version of Hall’s theorem still holds.## References

- Zvi Artstein,
*Distributions of random sets and random selections*, Israel J. Math.**46**(1983), no. 4, 313–324. MR**730347**, DOI 10.1007/BF02762891 - L. E. Bertossi,
*Standard capacities with nonstandard pavings*, Notas Soc. Mat. Chile**5**(1986), no. 2, 1–6. MR**881729** - B. Bollobás and N. Th. Varopoulos,
*Representation of systems of measurable sets*, Math. Proc. Cambridge Philos. Soc.**78**(1975), no. 2, 323–325. MR**379781**, DOI 10.1017/S0305004100051756 - D. W. Bressler and M. Sion,
*The current theory of analytic sets*, Canadian J. Math.**16**(1964), 207–230. MR**163854**, DOI 10.4153/CJM-1964-021-7 - P. Hall,
*On Representatives of Subsets*, J. London Math. Soc.**10**(1935), 26-30. - C. Ward Henson,
*Analytic sets, Baire sets and the standard part map*, Canadian J. Math.**31**(1979), no. 3, 663–672. MR**536371**, DOI 10.4153/CJM-1979-066-0 - C. Ward Henson and David Ross,
*Analytic mappings on hyperfinite sets*, Proc. Amer. Math. Soc.**118**(1993), no. 2, 587–596. MR**1126195**, DOI 10.1090/S0002-9939-1993-1126195-9 - Albert E. Hurd and Peter A. Loeb,
*An introduction to nonstandard real analysis*, Pure and Applied Mathematics, vol. 118, Academic Press, Inc., Orlando, FL, 1985. MR**806135** - H. Jerome Keisler, Kenneth Kunen, Arnold Miller, and Steven Leth,
*Descriptive set theory over hyperfinite sets*, J. Symbolic Logic**54**(1989), no. 4, 1167–1180. MR**1026596**, DOI 10.2307/2274812 - Peter A. Loeb,
*Conversion from nonstandard to standard measure spaces and applications in probability theory*, Trans. Amer. Math. Soc.**211**(1975), 113–122. MR**390154**, DOI 10.1090/S0002-9947-1975-0390154-8 - R. Daniel Mauldin,
*One-to-one selections—marriage theorems*, Amer. J. Math.**104**(1982), no. 4, 823–828. MR**667537**, DOI 10.2307/2374207 - Paul-André Meyer,
*Probabilités et potentiel*, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XIV. Actualités Scientifiques et Industrielles, No. 1318, Hermann, Paris, 1966 (French). MR**0205287** - C. St. J. A. Nash-Williams,
*Unexplored and semi-explored territories in graph theory*, New directions in the theory of graphs (Proc. Third Ann Arbor Conf., Univ. Michigan, Ann Arbor, Mich., 1971) Academic Press, New York, 1973, pp. 149–186. MR**0387097** - David Ross,
*Lifting theorems in nonstandard measure theory*, Proc. Amer. Math. Soc.**109**(1990), no. 3, 809–822. MR**1019753**, DOI 10.1090/S0002-9939-1990-1019753-0 - K. Schilling and B. Živaljević,
*Louveau’s Theorem for the Descriptive Set Theory of Internal Sets*, (submitted). - K. D. Stroyan and José Manuel Bayod,
*Foundations of infinitesimal stochastic analysis*, Studies in Logic and the Foundations of Mathematics, vol. 119, North-Holland Publishing Co., Amsterdam, 1986. MR**849100** - Boško Živaljević,
*Hyperfinite transversal theory*, Trans. Amer. Math. Soc.**330**(1992), no. 1, 371–399. MR**1033237**, DOI 10.1090/S0002-9947-1992-1033237-1 - Boško Živaljević,
*Rado’s theorem for the Loeb space of an internal $*$-finitely additive measure space*, Proc. Amer. Math. Soc.**112**(1991), no. 1, 203–207. MR**1056688**, DOI 10.1090/S0002-9939-1991-1056688-2 - Boško Živaljević,
*The structure of graphs all of whose $Y$-sections are internal sets*, J. Symbolic Logic**56**(1991), no. 1, 50–66. MR**1131729**, DOI 10.2307/2274903 - Boško Živaljević,
*Graphs with $\Pi ^0_1(\kappa )\ Y$-sections*, Arch. Math. Logic**32**(1993), no. 4, 259–273. MR**1213061**, DOI 10.1007/BF01387406 - —,
*$\Pi _{1}^{1}$ functions are almost internal*, Trans. Amer. Math. Soc.**347**(1995), 2621–2632. - —,
*$\Pi _{1}^{1}$ sets of infinite Loeb measure*, Proc. Amer. Math. Soc. (to appear).

## Additional Information

**Bosko Zivaljevic**- Affiliation: Department of Computer Science, The University of Illinois at Urbana - Champaign, Urbana, Illinois 61801
- Address at time of publication: International Paper Company, Process Management Computer, 3101 International Drive East, Mobile, Alabama 36606
- Email: zivaljev@cs.uiuc.edu
- Received by editor(s): August 7, 1994
- Received by editor(s) in revised form: June 5, 1995
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**348**(1996), 1921-1938 - MSC (1991): Primary 03H04, 03E15; Secondary 04A15, 05C99, 28E05, 54H05
- DOI: https://doi.org/10.1090/S0002-9947-96-01596-6
- MathSciNet review: 1348159