Linear additive functionals of superdiffusions and related nonlinear P.D.E.
HTML articles powered by AMS MathViewer
- by E. B. Dynkin and S. E. Kuznetsov
- Trans. Amer. Math. Soc. 348 (1996), 1959-1987
- DOI: https://doi.org/10.1090/S0002-9947-96-01602-9
- PDF | Request permission
Abstract:
Let $L$ be a second order elliptic differential operator in a bounded smooth domain $D$ in $\mathbb {R}^{d}$ and let $1<\alpha \le 2$. We get necessary and sufficient conditions on measures $\eta , \nu$ under which there exists a positive solution of the boundary value problem \begin{equation*}\begin {gathered} -Lv+v^{\alpha }=\eta \quad \text { in } D,\ v=\nu \quad \text { on } \partial D. \end{gathered}\tag {*} \end{equation*} The conditions are stated both analytically (in terms of capacities related to the Green’s and Poisson kernels) and probabilistically (in terms of branching measure-valued processes called $(L,\alpha )$-superdiffusions). We also investigate a closely related subject — linear additive functionals of superdiffusions. For a superdiffusion in an arbitrary domain $E$ in $\mathbb {R}^{d}$, we establish a 1-1 correspondence between a class of such functionals and a class of $L$-excessive functions $h$ (which we describe in terms of their Martin integral representation). The Laplace transform of $A$ satisfies an integral equation which can be considered as a substitute for (*).References
- D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, forthcoming book.
- P. Baras and M. Pierre, Singularités éliminables pour des équations semi-linéaires, Ann. Inst. Fourier (Grenoble) 34 (1984), no. 1, 185–206 (French, with English summary). MR 743627
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Claude Dellacherie and Paul-André Meyer, Probabilités et potentiel, Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. XV, Hermann, Paris, 1975 (French). Chapitres I à IV; Édition entièrement refondue. MR 0488194
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- E. B. Dynkin, Markov processes. Vols. I, II, Die Grundlehren der mathematischen Wissenschaften, Band 121, vol. 122, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1965. Translated with the authorization and assistance of the author by J. Fabius, V. Greenberg, A. Maitra, G. Majone. MR 0193671
- E. B. Dynkin, The exit space of a Markov process, Uspehi Mat. Nauk 24 (1969), no. 4 (148), 89–152 (Russian). MR 0264768
- E. B. Dynkin, Superprocesses and partial differential equations, Ann. Probab. 21 (1993), no. 3, 1185–1262. MR 1235414
- Hidegorô Nakano, Über Abelsche Ringe von Projektionsoperatoren, Proc. Phys.-Math. Soc. Japan (3) 21 (1939), 357–375 (German). MR 94
- E. B. Dynkin, Minimal excessive measures and functions, Trans. Amer. Math. Soc. 258 (1980), no. 1, 217–244. MR 554330, DOI 10.1090/S0002-9947-1980-0554330-5
- E. B. Dynkin, Superprocesses and their linear additive functionals, Trans. Amer. Math. Soc. 314 (1989), no. 1, 255–282. MR 930086, DOI 10.1090/S0002-9947-1989-0930086-7
- E. B. Dynkin, A probabilistic approach to one class of nonlinear differential equations, Probab. Theory Related Fields 89 (1991), no. 1, 89–115. MR 1109476, DOI 10.1007/BF01225827
- E. B. Dynkin, Branching particle systems and superprocesses, Ann. Probab. 19 (1991), no. 3, 1157–1194. MR 1112411
- E. B. Dynkin, Path processes and historical superprocesses, Probab. Theory Related Fields 90 (1991), no. 1, 1–36. MR 1124827, DOI 10.1007/BF01321132
- E. B. Dynkin, Additive functionals of superdiffusion processes, Random walks, Brownian motion, and interacting particle systems, Progr. Probab., vol. 28, Birkhäuser Boston, Boston, MA, 1991, pp. 269–281. MR 1146452, DOI 10.1007/978-1-4612-0459-6_{1}4
- E. B. Dynkin, Superdiffusions and parabolic nonlinear differential equations, Ann. Probab. 20 (1992), no. 2, 942–962. MR 1159580
- E. B. Dynkin and S. E. Kuznetsov, Superdiffusions and removable singularities for quasilinear partial differential equations, Comm. Pure & Appl. Math (1996) (to appear).
- E. B. Dynkin, S. E. Kuznetsov, Solutions of $Lu = u^{\alpha }$ dominated by $L$-harmonic functions, Journale d’Analyse (1996) (to appear).
- Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
- Masatoshi Fukushima, Dirichlet forms and Markov processes, North-Holland Mathematical Library, vol. 23, North-Holland Publishing Co., Amsterdam-New York; Kodansha, Ltd., Tokyo, 1980. MR 569058
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Abdelilah Gmira and Laurent Véron, Boundary singularities of solutions of some nonlinear elliptic equations, Duke Math. J. 64 (1991), no. 2, 271–324. MR 1136377, DOI 10.1215/S0012-7094-91-06414-8
- J.-F. Le Gall, The Brownian snake and solutions of $\Delta u=u^{2}$ in a domain, preprint, 1994.
- Carlo Miranda, Partial differential equations of elliptic type, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 2, Springer-Verlag, New York-Berlin, 1970. Second revised edition. Translated from the Italian by Zane C. Motteler. MR 0284700
- Michael Sharpe, General theory of Markov processes, Pure and Applied Mathematics, vol. 133, Academic Press, Inc., Boston, MA, 1988. MR 958914
Bibliographic Information
- E. B. Dynkin
- Affiliation: Department of Mathematics, Cornell University, Ithaca, New York 14853-7901
- Email: ebd1@cornell.edu
- S. E. Kuznetsov
- Affiliation: Central Economics and Mathematical Institute, Russian Academy of Sciences, 117418, Moscow, Russia
- Address at time of publication: Department of Mathematics, Cornell University, Ithaca, New York 14853-7901
- Email: sk47@cornell.edu
- Received by editor(s): March 29, 1995
- Additional Notes: Partially supported by National Science Foundation Grant DMS-9301315
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 1959-1987
- MSC (1991): Primary 60J60, 35J65; Secondary 60J80, 31C15, 60J25, 60J55, 31C45, 35J60
- DOI: https://doi.org/10.1090/S0002-9947-96-01602-9
- MathSciNet review: 1348859