$k$-spaces and Borel filters on the set of integers
HTML articles powered by AMS MathViewer
- by Jean Calbrix
- Trans. Amer. Math. Soc. 348 (1996), 2085-2090
- DOI: https://doi.org/10.1090/S0002-9947-96-01635-2
- PDF | Request permission
Abstract:
We say that a countable, Hausdorff, topological space with one and only one accumulation point is a point-space. For such a space, we give several properties which are equivalent to the property of being a k-space. We study some free filters on the set of integers and we determine if the associated point-spaces are k-spaces or not. We show that the filters of Lutzer-van Mill-Pol are k-filters. We deduce that, for each countable ordinal ${\alpha \geq 2}$, there exists a free filter of true additive class ${\alpha }$ (Baire’s classification) and a free filter of true multiplicative class ${\alpha }$ for which the associated point-spaces are k-spaces but not ${\aleph _{0}}$, the existence being true in the additive case for ${\alpha =1}$. In particular, we answer negatively a question raised in J. Calbrix, C. R. Acad. Sci. Paris 305 (1987), 109–111.References
- Jean Calbrix, Classes de Baire et espaces d’applications continues, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 16, 759–762 (French, with English summary). MR 817590
- Jean Calbrix, Filtres sur les entiers et ensembles analytiques, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 4, 109–111 (French, with English summary). MR 901620
- Gustave Choquet, Lectures on analysis. Vol. I: Integration and topological vector spaces, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Edited by J. Marsden, T. Lance and S. Gelbart. MR 0250011
- T. Dobrowolski, W. Marciszewski, and J. Mogilski, On topological classification of function spaces $C_p(X)$ of low Borel complexity, Trans. Amer. Math. Soc. 328 (1991), no. 1, 307–324. MR 1065602, DOI 10.1090/S0002-9947-1991-1065602-X
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- D. Lutzer, J. van Mill, and R. Pol, Descriptive complexity of function spaces, Trans. Amer. Math. Soc. 291 (1985), no. 1, 121–128. MR 797049, DOI 10.1090/S0002-9947-1985-0797049-2
Bibliographic Information
- Jean Calbrix
- Affiliation: Laboratoire A.M.S. URA C.N.R.S. D1378, U.F.R. des Sciences, F76821 Mont Saint Aignan cedex, France
- Email: Jean.Calbrix@univ-rouen.fr
- Received by editor(s): December 3, 1993
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 2085-2090
- MSC (1991): Primary :, 03E15, 04A15, 54-05; Secondary 54C35
- DOI: https://doi.org/10.1090/S0002-9947-96-01635-2
- MathSciNet review: 1355296