New results in the perturbation theory of maximal monotone and $M$-accretive operators in Banach spaces
HTML articles powered by AMS MathViewer
- by Athanassios G. Kartsatos
- Trans. Amer. Math. Soc. 348 (1996), 1663-1707
- DOI: https://doi.org/10.1090/S0002-9947-96-01654-6
- PDF | Request permission
Abstract:
Let $X$ be a real Banach space and $G$ a bounded, open and convex subset of $X.$ The solvability of the fixed point problem $(*)~Tx+Cx \owns x$ in $D(T)\cap \overline {G}$ is considered, where $T:X\supset D(T)\to 2^{X}$ is a possibly discontinuous $m$-dissipative operator and $C: \overline {G}\to X$ is completely continuous. It is assumed that $X$ is uniformly convex, $D(T)\cap G \not = \emptyset$ and $(T+C)(D(T)\cap \partial G)\subset \overline {G}.$ A result of Browder, concerning single-valued operators $T$ that are either uniformly continuous or continuous with $X^{*}$ uniformly convex, is extended to the present case. Browder’s method cannot be applied in this setting, even in the single-valued case, because there is no class of permissible homeomorphisms. Let $\Gamma = \{\beta :\mathcal {R}_{+}\to \mathcal {R}_{+}~;~\beta (r)\to 0\text { as }r\to \infty \}.$ The effect of a weak boundary condition of the type $\langle u+Cx,x\rangle \ge -\beta (\|x\|)\|x\|^{2}$ on the range of operators $T+C$ is studied for $m$-accretive and maximal monotone operators $T.$ Here, $\beta \in \Gamma ,~x\in D(T)$ with sufficiently large norm and $u\in Tx.$ Various new eigenvalue results are given involving the solvability of $Tx+ \lambda Cx\owns 0$ with respect to $(\lambda ,x)\in (0,\infty )\times D(T).$ Several results do not require the continuity of the operator $C.$ Four open problems are also given, the solution of which would improve upon certain results of the paper.References
- Ja. I. Al′ber, The solution of nonlinear equations with monotone operators in a Banach space, Sibirsk. Mat. Ž. 16 (1975), 3–11, 195 (Russian). MR 0370285
- Viorel Barbu, Nonlinear semigroups and differential equations in Banach spaces, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976. Translated from the Romanian. MR 0390843
- P. Bénilan, Équations d’Évolution dans un Espace de Banach Quelconque et Applications, Thése, Orsay, 1972.
- H. Brezis, M. G. Crandall, and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach space, Comm. Pure Appl. Math. 23 (1970), 123–144. MR 257805, DOI 10.1002/cpa.3160230107
- Felix E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Nonlinear functional analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, Ill., 1968) Amer. Math. Soc., Providence, R.I., 1976, pp. 1–308. MR 0405188
- Bruce D. Calvert and Chaitan P. Gupta, Nonlinear elliptic boundary value problems in $L^{p}$-spaces and sums of ranges of accretive operators, Nonlinear Anal. 2 (1978), no. 1, 1–26. MR 512651, DOI 10.1016/0362-546X(78)90038-X
- Ioana Cioranescu, Geometry of Banach spaces, duality mappings and nonlinear problems, Mathematics and its Applications, vol. 62, Kluwer Academic Publishers Group, Dordrecht, 1990. MR 1079061, DOI 10.1007/978-94-009-2121-4
- Klaus Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365–374. MR 350538, DOI 10.1007/BF01171148
- Klaus Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, 1985. MR 787404, DOI 10.1007/978-3-662-00547-7
- Z. Ding and A. G. Kartsatos, Nonzero solutions of nonlinear equations involving compact perturbations of accretive operators in Banach spaces, Nonlinear Anal. 25 (1995), 1333–1342.
- Z. Ding and A. G. Kartsatos, P-Regular mappings and alternative results for perturbations of $m$-accretive operators in Banach spaces, Topol. Meth. Nonl. Anal. (to appear).
- P. M. Fitzpatrick and W. V. Petryshyn, On the nonlinear eigenvalue problem $T(u)=\lambda C(u)$, involving noncompact abstract and differential operators, Boll. Un. Mat. Ital. B (5) 15 (1978), no. 1, 80–107 (English, with Italian summary). MR 498682
- Zhengyuan Guan, Ranges of operators of monotone type in Banach space, J. Math. Anal. Appl. 174 (1993), no. 1, 256–264. MR 1212931, DOI 10.1006/jmaa.1993.1115
- Zhengyuan Guan, Solvability of semilinear equations with compact perturbations of operators of monotone type, Proc. Amer. Math. Soc. 121 (1994), no. 1, 93–102. MR 1174492, DOI 10.1090/S0002-9939-1994-1174492-4
- Z. Guan and A. G. Kartsatos, Solvability of nonlinear equations with coercivity generated by compact perturbations of $m$-accretive operators in Banach spaces, Houston J. Math. 21 (1995), 149-188.
- Z. Guan and A. G. Kartsatos, On the eigenvalue problem for perturbations of nonlinear accretive and monotone operators in Banach spaces, Nonlinear Anal. (to appear).
- Zhengyuan Guan and Athanassios G. Kartsatos, Ranges of perturbed maximal monotone and $m$-accretive operators in Banach spaces, Trans. Amer. Math. Soc. 347 (1995), no. 7, 2403–2435. MR 1297527, DOI 10.1090/S0002-9947-1995-1297527-2
- Chaitan P. Gupta and Peter Hess, Existence theorems for nonlinear noncoercive operator equations and nonlinear elliptic boundary value problems, J. Differential Equations 22 (1976), no. 2, 305–313. MR 473942, DOI 10.1016/0022-0396(76)90030-9
- N. Hirano and A. K. Kalinde, On perturbations of $m$-accretive operators in Banach spaces, Proc. Amer. Math. Soc. (to appear).
- D. R. Kaplan and A. G. Kartsatos, Ranges of sums and control of nonlinear evolutions with preassigned responses, J. Optim. Theory Appl. 81 (1994), 121-141.
- Athanassios G. Kartsatos, Zeros of demicontinuous accretive operators in Banach spaces, J. Integral Equations 8 (1985), no. 2, 175–184. MR 777969
- Athanassios G. Kartsatos, On compact perturbations and compact resolvents of nonlinear $m$-accretive operators in Banach spaces, Proc. Amer. Math. Soc. 119 (1993), no. 4, 1189–1199. MR 1216817, DOI 10.1090/S0002-9939-1993-1216817-6
- A. G. Kartsatos, Recent results involving compact perturbations and compact resolvents of accretive operators in Banach spaces, Proceedings of the First World Congress of Nonlinear Analysts, Tampa, Florida, 1992, Walter De Gruyter, New York, (1995), pp. 2197-2222.
- Athanassios G. Kartsatos, Sets in the ranges of sums for perturbations of nonlinear $m$-accretive operators in Banach spaces, Proc. Amer. Math. Soc. 123 (1995), no. 1, 145–156. MR 1213863, DOI 10.1090/S0002-9939-1995-1213863-5
- A. G. Kartsatos, On the construction of methods of lines for functional evolutions in general Banach spaces, Nonlinear Anal. 25 (1995), 1321-1331.
- A. G. Kartsatos, A compact evolution operator generated by a time-dependent $m$-accretive operator in a general Banach space, Math. Ann. 302 (1995), 473-487.
- A. G. Kartsatos, Sets in the ranges of nonlinear accretive operators in Banach spaces, Studia Math. 114 (1995), 261-273.
- A. G. Kartsatos, On the perturbation theory of $m$-accretive operators in Banach spaces, Proc. Amer. Math. Soc. (to appear).
- A. G. Kartsatos and X. Liu, Nonlinear equations involving compact perturbations of $m$-accretive operators in Banach spaces, Nonlinear Anal. 24 (1995), 469-492.
- A. G. Kartsatos and R. D. Mabry, Controlling the space with preassigned responses, J. Optim. Theory Appl. 54 (1987), no. 3, 517–540. MR 906167, DOI 10.1007/BF00940200
- V. Lakshmikantham and S. Leela, Nonlinear differential equations in abstract spaces, International Series in Nonlinear Mathematics: Theory, Methods and Applications, vol. 2, Pergamon Press, Oxford-New York, 1981. MR 616449
- N. G. Lloyd, Degree theory, Cambridge Tracts in Mathematics, No. 73, Cambridge University Press, Cambridge-New York-Melbourne, 1978. MR 0493564
- Ivar Massabò and Charles A. Stuart, Positive eigenvectors of $k$-set contractions, Nonlinear Anal. 3 (1979), no. 1, 35–44 (1978). MR 520468, DOI 10.1016/0362-546X(79)90031-2
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Dan Pascali and Silviu Sburlan, Nonlinear mappings of monotone type, Martinus Nijhoff Publishers, The Hague; Sijthoff & Noordhoff International Publishers, Alphen aan den Rijn, 1978. MR 531036
- Simeon Reich, Extension problems for accretive sets in Banach spaces, J. Functional Analysis 26 (1977), no. 4, 378–395. MR 0477893, DOI 10.1016/0022-1236(77)90022-2
- E. H. Rothe, Introduction to various aspects of degree theory in Banach spaces, Mathematical Surveys and Monographs, vol. 23, American Mathematical Society, Providence, RI, 1986. MR 852987, DOI 10.1090/surv/023
- I. V. Skrypnik, Methods for analysis of nonlinear elliptic boundary value problems, Translations of Mathematical Monographs, vol. 139, American Mathematical Society, Providence, RI, 1994. Translated from the 1990 Russian original by Dan D. Pascali. MR 1297765, DOI 10.1090/mmono/139
- M. M. Vainberg, Variational methods for the study of nonlinear operators, Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1964. With a chapter on Newton’s method by L. V. Kantorovich and G. P. Akilov. Translated and supplemented by Amiel Feinstein. MR 0176364
- I. I. Vrabie, Compactness methods for nonlinear evolutions, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 32, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987. With a foreword by A. Pazy. MR 932730
- Eberhard Zeidler, Nonlinear functional analysis and its applications. II/B, Springer-Verlag, New York, 1990. Nonlinear monotone operators; Translated from the German by the author and Leo F. Boron. MR 1033498, DOI 10.1007/978-1-4612-0985-0
Bibliographic Information
- Athanassios G. Kartsatos
- Affiliation: Department of Mathematics, University of South Florida, Tampa, Florida 33620-5700
- Email: hermes@gauss.math.usf.edu
- Received by editor(s): February 7, 1995
- Additional Notes: The results of this paper were announced in a lecture at the International Conference on Nonlinear Differential Equations, Kiev, Ukraine, August 21-27, 1995.
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 1663-1707
- MSC (1991): Primary 47H17; Secondary 47B44, 47H09, 47H10
- DOI: https://doi.org/10.1090/S0002-9947-96-01654-6
- MathSciNet review: 1357397