Composition operators between Bergman and Hardy spaces
HTML articles powered by AMS MathViewer
- by Wayne Smith
- Trans. Amer. Math. Soc. 348 (1996), 2331-2348
- DOI: https://doi.org/10.1090/S0002-9947-96-01647-9
- PDF | Request permission
Abstract:
We study composition operators between weighted Bergman spaces. Certain growth conditions for generalized Nevanlinna counting functions of the inducing map are shown to be necessary and sufficient for such operators to be bounded or compact. Particular choices for the weights yield results on composition operators between the classical unweighted Bergman and Hardy spaces.References
- Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0357743
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- M. Essén, D. F. Shea, and C. S. Stanton, A value-distribution criterion for the class $L\,\textrm {log}\,L$, and some related questions, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 4, 127–150 (English, with French summary). MR 812321, DOI 10.5802/aif.1030
- F. W. Gehring and B. P. Palka, Quasiconformally homogeneous domains, J. Analyse Math. 30 (1976), 172–199. MR 437753, DOI 10.1007/BF02786713
- Hunziker, H., Kompositionsoperatoren auf klassischen Hardyräumen, Thesis, Universität Zurich (1989).
- Herbert Hunziker and Hans Jarchow, Composition operators which improve integrability, Math. Nachr. 152 (1991), 83–99. MR 1121226, DOI 10.1002/mana.19911520109
- Littlewood, J.E., On inequalities in the theory of functions, Proc. London Math. Soc. 23 (1925), 481–519.
- Barbara D. MacCluer and Joel H. Shapiro, Angular derivatives and compact composition operators on the Hardy and Bergman spaces, Canad. J. Math. 38 (1986), no. 4, 878–906. MR 854144, DOI 10.4153/CJM-1986-043-4
- Riedl, R., Composition operators and geometric properties of analytic functions, Thesis, Universität Zurich (1994).
- Joel H. Shapiro, The essential norm of a composition operator, Ann. of Math. (2) 125 (1987), no. 2, 375–404. MR 881273, DOI 10.2307/1971314
- Joel H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1237406, DOI 10.1007/978-1-4612-0887-7
- J. H. Shapiro and P. D. Taylor, Compact, nuclear, and Hilbert-Schmidt composition operators on $H^{2}$, Indiana Univ. Math. J. 23 (1973/74), 471–496. MR 326472, DOI 10.1512/iumj.1973.23.23041
- Charles S. Stanton, Counting functions and majorization for Jensen measures, Pacific J. Math. 125 (1986), no. 2, 459–468. MR 863538, DOI 10.2140/pjm.1986.125.459
Bibliographic Information
- Wayne Smith
- Affiliation: Department of Mathematics, University of Hawaii, Honolulu, Hawaii 96822
- MR Author ID: 213832
- Email: wayne@math.hawaii.edu
- Received by editor(s): February 23, 1995
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 2331-2348
- MSC (1991): Primary 47B38; Secondary 30D55, 46E15
- DOI: https://doi.org/10.1090/S0002-9947-96-01647-9
- MathSciNet review: 1357404