Relatively free invariant algebras of finite reflection groups
HTML articles powered by AMS MathViewer
- by Mátyás Domokos
- Trans. Amer. Math. Soc. 348 (1996), 2217-2234
- DOI: https://doi.org/10.1090/S0002-9947-96-01687-X
- PDF | Request permission
Abstract:
Let $G$ be a finite subgroup of $Gl_{n}(K)$ $(K$ is a field of characteristic $0$ and $n\geq 2)$ acting by linear substitution on a relatively free algebra $K\langle x_{1},\dots ,x_{n}\rangle /I$ of a variety of unitary associative algebras. The algebra of invariants is relatively free if and only if $G$ is a pseudo-reflection group and $I$ contains the polynomial $[[x_{2},x_{1}],x_{1}].$References
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Arjeh M. Cohen, Finite complex reflection groups, Ann. Sci. École Norm. Sup. (4) 9 (1976), no. 3, 379–436. MR 422448, DOI 10.24033/asens.1313
- Warren Dicks and Edward Formanek, Poincaré series and a problem of S. Montgomery, Linear and Multilinear Algebra 12 (1982/83), no. 1, 21–30. MR 672913, DOI 10.1080/03081088208817467
- Vesselin Drensky, Polynomial identities for $2\times 2$ matrices, Acta Appl. Math. 21 (1990), no. 1-2, 137–161. MR 1085776, DOI 10.1007/BF00053295
- Vesselin Drensky, Computational techniques for PI-algebras, Topics in algebra, Part 1 (Warsaw, 1988) Banach Center Publ., vol. 26, PWN, Warsaw, 1990, pp. 17–44. MR 1171223
- V. Drensky, Private communication, 1993.
- Edward Formanek, Noncommutative invariant theory, Group actions on rings (Brunswick, Maine, 1984) Contemp. Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 87–119. MR 810646, DOI 10.1090/conm/043/810646
- Robert M. Guralnick, Invariants of finite linear groups on relatively free algebras, Linear Algebra Appl. 72 (1985), 85–92. MR 815254, DOI 10.1016/0024-3795(85)90144-2
- V. K. Kharchenko, Noncommutative invariants of finite groups and Noetherian varieties, J. Pure Appl. Algebra 31 (1984), no. 1-3, 83–90. MR 738208, DOI 10.1016/0022-4049(84)90079-3
- D. Krakowski and A. Regev, The polynomial identities of the Grassmann algebra, Trans. Amer. Math. Soc. 181 (1973), 429–438. MR 325658, DOI 10.1090/S0002-9947-1973-0325658-5
- Louis Halle Rowen, Polynomial identities in ring theory, Pure and Applied Mathematics, vol. 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 576061
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Louis Solomon, Invariants of finite reflection groups, Nagoya Math. J. 22 (1963), 57–64. MR 154929, DOI 10.1017/S0027763000011028
- T. A. Springer, Regular elements of finite reflection groups, Invent. Math. 25 (1974), 159–198. MR 354894, DOI 10.1007/BF01390173
- T. A. Springer, Invariant theory, Lecture Notes in Mathematics, Vol. 585, Springer-Verlag, Berlin-New York, 1977. MR 0447428, DOI 10.1007/BFb0095644
Bibliographic Information
- Mátyás Domokos
- Affiliation: Mathematical Institute of the Hungarian Academy of Sciences, P.O.B. 127, H-1364, Budapest, Hungary
- MR Author ID: 345568
- Email: domokos@math-inst.hu
- Received by editor(s): September 7, 1994
- Additional Notes: This research was partially supported by Széchenyi István Scholarship Foundation and by Hungarian National Foundation for Scientific Research grant no. T4265.
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 2217-2234
- MSC (1991): Primary 16W20; Secondary 16R10
- DOI: https://doi.org/10.1090/S0002-9947-96-01687-X
- MathSciNet review: 1363010