Immersed $n$-manifolds in $\mathbf {R}^{2n}$ and the double points of their generic projections into $\mathbf {R}^{2n-1}$
HTML articles powered by AMS MathViewer
- by Osamu Saeki and Kazuhiro Sakuma
- Trans. Amer. Math. Soc. 348 (1996), 2585-2606
- DOI: https://doi.org/10.1090/S0002-9947-96-01493-6
- PDF | Request permission
Abstract:
We give two congruence formulas concerning the number of non-trivial double point circles and arcs of a smooth map with generic singularitiesâthe Whitney umbrellasâof an $n$-manifold into $\mathbf {R}^{2n-1}$, which generalize the formulas by SzĂźcs for an immersion with normal crossings. Then they are applied to give a new geometric proof of the congruence formula due to Mahowald and Lannes concerning the normal Euler number of an immersed $n$-manifold in $\mathbf {R}^{2n}$. We also study generic projections of an embedded $n$-manifold in $\mathbf {R}^{2n}$ into $\mathbf {R}^{2n-1}$ and prove an elimination theorem of Whitney umbrella points of opposite signs, which is a direct generalization of a recent result of Carter and Saito concerning embedded surfaces in $\mathbf {R}^{4}$. The problem of lifting a map into $\mathbf {R}^{2n-1}$ to an embedding into $\mathbf {R}^{2n}$ is also studied.References
- Michèle Audin, FibrĂŠs normaux dâimmersions en dimension double, points doubles dâimmersions lagragiennes et plongements totalement rĂŠels, Comment. Math. Helv. 63 (1988), no. 4, 593â623 (French). MR 966952, DOI 10.1007/BF02566781
- Michèle Audin, Quelques remarques sur les surfaces lagrangiennes de Giventalâ˛, J. Geom. Phys. 7 (1990), no. 4, 583â598 (1991) (French, with English summary). MR 1131914, DOI 10.1016/0393-0440(90)90008-Q
- Thomas F. Banchoff, Double tangency theorems for pairs of submanifolds, Geometry Symposium, Utrecht 1980 (Utrecht, 1980) Lecture Notes in Math., vol. 894, Springer, Berlin-New York, 1981, pp. 26â48. MR 655418
- S. J. Blank and C. Curley, Desingularizing maps of corank one, Proc. Amer. Math. Soc. 80 (1980), no. 3, 483â486. MR 581010, DOI 10.1090/S0002-9939-1980-0581010-8
- J. Scott Carter and Masahico Saito, Canceling branch points on projections of surfaces in $4$-space, Proc. Amer. Math. Soc. 116 (1992), no. 1, 229â237. MR 1126191, DOI 10.1090/S0002-9939-1992-1126191-0
- Cole A. Giller, Towards a classical knot theory for surfaces in $\textbf {R}^{4}$, Illinois J. Math. 26 (1982), no. 4, 591â631. MR 674227
- M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in Mathematics, Vol. 14, Springer-Verlag, New York-Heidelberg, 1973. MR 0341518, DOI 10.1007/978-1-4615-7904-5
- Morris W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242â276. MR 119214, DOI 10.1090/S0002-9947-1959-0119214-4
- Seiichi Kamada, Nonorientable surfaces in $4$-space, Osaka J. Math. 26 (1989), no. 2, 367â385. MR 1017592
- J. Lannes, Sur les immersions de Boy, Algebraic topology, Aarhus 1982 (Aarhus, 1982) Lecture Notes in Math., vol. 1051, Springer, Berlin, 1984, pp. 263â270 (French). MR 764583, DOI 10.1007/BFb0075571
- Li Bang-He, Generalization of the Whitney-Mahowald Theorem, Trans. Amer. Math. Soc. 346 (1994), 511â521.
- Mark Mahowald, On the normal bundle of a manifold, Pacific J. Math. 14 (1964), 1335â1341. MR 176485, DOI 10.2140/pjm.1964.14.1335
- W. S. Massey, On the Stiefel-Whitney classes of a manifold, Amer. J. Math. 82 (1960), 92â102. MR 111053, DOI 10.2307/2372878
- W. S. Massey, Proof of a conjecture of Whitney, Pacific J. Math. 31 (1969), 143â156. MR 250331, DOI 10.2140/pjm.1969.31.143
- John N. Mather, Generic projections, Ann. of Math. (2) 98 (1973), 226â245. MR 362393, DOI 10.2307/1970783
- F. Ronga, âLa classe duale aux points doublesâ dâune application, Compositio Math. 27 (1973), 223â232 (French). MR 391114
- Osamu Saeki, Notes on the topology of folds, J. Math. Soc. Japan 44 (1992), no. 3, 551â566. MR 1167382, DOI 10.2969/jmsj/04430551
- Châing Mu Wu, Some special elements in $U_\ast (Z_p)$. II, Tamkang J. Math. 17 (1986), no. 2, 63â69. MR 872679
- AndrĂĄs SzĹącs, Note on double points of immersions, Manuscripta Math. 76 (1992), no. 3-4, 251â256. MR 1185018, DOI 10.1007/BF02567759
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82â96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Sergio Sispanov, GeneralizaciĂłn del teorema de Laguerre, Bol. Mat. 12 (1939), 113â117 (Spanish). MR 3
- J. J. Corliss, Upper limits to the real roots of a real algebraic equation, Amer. Math. Monthly 46 (1939), 334â338. MR 4, DOI 10.1080/00029890.1939.11998880
- Albert Eagle, Series for all the roots of a trinomial equation, Amer. Math. Monthly 46 (1939), 422â425. MR 5, DOI 10.2307/2303036
- Albert Eagle, Series for all the roots of a trinomial equation, Amer. Math. Monthly 46 (1939), 422â425. MR 5, DOI 10.2307/2303036
- Y. Yamada, An extension of Whitneyâs congruence, Osaka J. Math. 32 (1995), 185â192.
Bibliographic Information
- Osamu Saeki
- Affiliation: Department of Mathematics, Faculty of Science, Hiroshima University, Higashi-Hiroshima 739, Japan
- Email: saeki@top2.math.sci.hiroshima-u.ac.jp
- Kazuhiro Sakuma
- Affiliation: Department of General Education, Kochi National College of Technology, Nankoku City, Kochi 783, Japan
- Email: sakuma@cc.kochi-ct.ac.jp
- Received by editor(s): November 29, 1994
- Additional Notes: The first author was partially supported by CNPq, Brazil.
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 2585-2606
- MSC (1991): Primary 57R42; Secondary 57R45, 57R40
- DOI: https://doi.org/10.1090/S0002-9947-96-01493-6
- MathSciNet review: 1322957