On functions in the little Bloch space and inner functions
HTML articles powered by AMS MathViewer
- by S. Rohde
- Trans. Amer. Math. Soc. 348 (1996), 2519-2531
- DOI: https://doi.org/10.1090/S0002-9947-96-01497-3
- PDF | Request permission
Abstract:
We prove that analytic functions in the little Bloch space assume every value as a radial limit on a set of Hausdorff dimension one, unless they have radial limits on a set of positive measure. The analogue for inner functions in the little Bloch space is also proven, and characterizations of various classes of Bloch functions in terms of their level sets are given.References
- J. M. Anderson, J. Clunie, and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12–37. MR 361090
- J. M. Anderson and L. D. Pitt, The boundary behavior of Bloch functions and univalent functions, Michigan Math. J. 35 (1988), no. 2, 313–320. MR 959278, DOI 10.1307/mmj/1029003758
- Kari Astala and Michel Zinsmeister, Teichmüller spaces and BMOA, Math. Ann. 289 (1991), no. 4, 613–625. MR 1103039, DOI 10.1007/BF01446592
- Christopher J. Bishop, Bounded functions in the little Bloch space, Pacific J. Math. 142 (1990), no. 2, 209–225. MR 1042042, DOI 10.2140/pjm.1990.142.209
- Christopher J. Bishop and Peter W. Jones, Harmonic measure, $L^2$ estimates and the Schwarzian derivative, J. Anal. Math. 62 (1994), 77–113. MR 1269200, DOI 10.1007/BF02835949
- J. J. Carmona, J. Cufí, and Ch. Pommerenke, On the angular limits of Bloch functions, Publ. Mat. 32 (1988), no. 2, 191–198. MR 975898, DOI 10.5565/PUBLMAT_{3}2288_{0}7
- J. J. Carmona, J. Cufí, and Ch. Pommerenke, On the angular boundedness of Bloch functions, Rev. Mat. Iberoamericana 5 (1989), no. 3-4, 125–137. MR 1077207, DOI 10.4171/RMI/88
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- D. Gnuschke-Hauschild and Ch. Pommerenke, On Bloch functions and gap series, J. Reine Angew. Math. 367 (1986), 172–186. MR 839130, DOI 10.1515/crll.1986.367.172
- G.Hungerford, Boundaries of smooth sets and singular sets of Blaschke products in the little Bloch space, Thesis, Pasadena (1988).
- Peter W. Jones, Square functions, Cauchy integrals, analytic capacity, and harmonic measure, Harmonic analysis and partial differential equations (El Escorial, 1987) Lecture Notes in Math., vol. 1384, Springer, Berlin, 1989, pp. 24–68. MR 1013815, DOI 10.1007/BFb0086793
- G. R. MacLane, Asymptotic values of holomorphic functions, Rice Univ. Stud. 49 (1963), no. 1, 83. MR 148923
- N. G. Makarov, Conformal mapping and Hausdorff measures, Ark. Mat. 25 (1987), no. 1, 41–89. MR 918379, DOI 10.1007/BF02384436
- N. G. Makarov, Probability methods in the theory of conformal mappings, Algebra i Analiz 1 (1989), no. 1, 3–59 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 1, 1–56. MR 1015333
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7
- S. Rohde, On conformal welding and quasicircles, Michigan Math. J. 38 (1991), no. 1, 111–116. MR 1091514, DOI 10.1307/mmj/1029004266
- S. Rohde, The boundary behavior of Bloch functions, J. London Math. Soc. (2) 48 (1993), no. 3, 488–499. MR 1241783, DOI 10.1112/jlms/s2-48.3.488
- David A. Stegenga and Kenneth Stephenson, A geometric characterization of analytic functions with bounded mean oscillation, J. London Math. Soc. (2) 24 (1981), no. 2, 243–254. MR 631937, DOI 10.1112/jlms/s2-24.2.243
- J.Väisälä, M.Vuorinen, H.Wallin, Thick sets and quasiregular maps, preprint.
Bibliographic Information
- S. Rohde
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109; Fachbereich Mathematik, TU Berlin, 10623 Berlin, Germany
- Email: rohde@math.tu-berlin.de
- Received by editor(s): June 10, 1994
- Additional Notes: Research performed in part as a Feodor Lynen Fellow of the Alexander von Humboldt-Stiftung.
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 2519-2531
- MSC (1991): Primary 30D45
- DOI: https://doi.org/10.1090/S0002-9947-96-01497-3
- MathSciNet review: 1322956