Low codimensional submanifolds of Euclidean space with nonnegative isotropic curvature
HTML articles powered by AMS MathViewer
- by Francesco Mercuri and Maria Helena Noronha
- Trans. Amer. Math. Soc. 348 (1996), 2711-2724
- DOI: https://doi.org/10.1090/S0002-9947-96-01589-9
- PDF | Request permission
Abstract:
In this paper we study compact submanifolds of Euclidean space with nonnegative isotropic curvature and low codimension. We determine their homology completely in the case of hypersurfaces and for some low codimensional conformally flat immersions.References
- Yuriko Y. Baldin and Francesco Mercuri, Isometric immersions in codimension two with nonnegative curvature, Math. Z. 173 (1980), no. 2, 111–117. MR 583380, DOI 10.1007/BF01159953
- Yuriko Y. Baldin and Francesco Mercuri, Codimension two nonorientable submanifolds with nonnegative curvature, Proc. Amer. Math. Soc. 103 (1988), no. 3, 918–920. MR 947682, DOI 10.1090/S0002-9939-1988-0947682-8
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Marcel Berger, Remarques sur les groupes d’holonomie des variétés riemanniennes, C. R. Acad. Sci. Paris Sér. A-B 262 (1966), A1316–A1318 (French). MR 200860
- Richard L. Bishop, The holonomy algebra of immersed manifolds of codimension two, J. Differential Geometry 2 (1968), 347–353. MR 243460
- Robert B. Brown and Alfred Gray, Riemannian manifolds with holonomy group $\textrm {S}pin$ (9), Differential geometry (in honor of Kentaro Yano), Kinokuniya, Tokyo, 1972, pp. 41–59. MR 0328817
- Manfredo P. do Carmo, Differential geometry of curves and surfaces, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976. Translated from the Portuguese. MR 0394451
- Manfredo do Carmo, Marcos Dajczer, and Francesco Mercuri, Compact conformally flat hypersurfaces, Trans. Amer. Math. Soc. 288 (1985), no. 1, 189–203. MR 773056, DOI 10.1090/S0002-9947-1985-0773056-0
- Andrzej Derdziński, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math. 49 (1983), no. 3, 405–433. MR 707181
- Andrzej Derdziński, Francesco Mercuri, and Maria Helena Noronha, Manifolds with pure nonnegative curvature operator, Bol. Soc. Brasil. Mat. 18 (1987), no. 2, 13–22. MR 1018442, DOI 10.1007/BF02590020
- S. Gallot and D. Meyer, Opérateur de courbure et laplacien des formes différentielles d’une variété riemannienne, J. Math. Pures Appl. (9) 54 (1975), no. 3, 259–284 (French). MR 454884
- Ravindra S. Kulkarni, Curvature structures and conformal transformations, J. Differential Geometry 4 (1970), 425–451. MR 284949
- Mario J. Micallef and John Douglas Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. (2) 127 (1988), no. 1, 199–227. MR 924677, DOI 10.2307/1971420
- Mario J. Micallef and McKenzie Y. Wang, Metrics with nonnegative isotropic curvature, Duke Math. J. 72 (1993), no. 3, 649–672. MR 1253619, DOI 10.1215/S0012-7094-93-07224-9
- John Douglas Moore, Isometric immersions of riemannian products, J. Differential Geometry 5 (1971), 159–168. MR 307128
- John Douglas Moore, Conformally flat submanifolds of Euclidean space, Math. Ann. 225 (1977), no. 1, 89–97. MR 431046, DOI 10.1007/BF01364894
- Maria Helena Noronha, A note on the first Betti number of submanifolds with nonnegative Ricci curvature in codimension two, Manuscripta Math. 73 (1991), no. 3, 335–339. MR 1132144, DOI 10.1007/BF02567645
- Maria Helena Noronha, Some compact conformally flat manifolds with nonnegative scalar curvature, Geom. Dedicata 47 (1993), no. 3, 255–268. MR 1235219, DOI 10.1007/BF01263660
- Maria Helena Noronha, Self-duality and $4$-manifolds with nonnegative curvature on totally isotropic $2$-planes, Michigan Math. J. 41 (1994), no. 1, 3–12. MR 1260604, DOI 10.1307/mmj/1029004910
- Walter Seaman, On manifolds with nonnegative curvature on totally isotropic 2-planes, Trans. Amer. Math. Soc. 338 (1993), no. 2, 843–855. MR 1123458, DOI 10.1090/S0002-9947-1993-1123458-2
Bibliographic Information
- Francesco Mercuri
- Affiliation: IMECC-UNICAMP, Universidade Estadual de Campinas, 13081-970, Campinas, SP, Brasil
- Email: mercuri@ime.unicamp.br
- Maria Helena Noronha
- Affiliation: Department of Mathematics, California State University Northridge, California 91330-8183
- Email: mnoronha@huey.csun.edu
- Received by editor(s): March 24, 1995
- Additional Notes: The first author’s research was partially supported by CNPq, Brasil.
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 2711-2724
- MSC (1991): Primary 53C40, 53C42
- DOI: https://doi.org/10.1090/S0002-9947-96-01589-9
- MathSciNet review: 1348153