Divisors on Generic Complete Intersections in Projective Space
HTML articles powered by AMS MathViewer
- by Geng Xu
- Trans. Amer. Math. Soc. 348 (1996), 2725-2736
- DOI: https://doi.org/10.1090/S0002-9947-96-01613-3
- PDF | Request permission
Abstract:
Let $V$ be a generic complete intersection of hypersurfaces of degree $d_{1}, d_{2}, \cdots , d_{m}$ in $n$-dimensional projective space. We study the question when a divisor on $V$ is nonrational or of general type, and give an alternative proof of a result of Ein. We also give some improvement of Ein’s result in the case $d_{1}+d_{2}+\cdots + d_{m}=n+2$.References
- Herbert Clemens, János Kollár, and Shigefumi Mori, Higher-dimensional complex geometry, Astérisque 166 (1988), 144 pp. (1989) (English, with French summary). MR 1004926
- M.-C. Chang and Z. Ran, Divisors on some generic hypersurfaces, J. Differential Geom. 38 (1993), no. 3, 671–678. MR 1243790
- Lawrence Ein, Subvarieties of generic complete intersections, Invent. Math. 94 (1988), no. 1, 163–169. MR 958594, DOI 10.1007/BF01394349
- Lawrence Ein, Subvarieties of generic complete intersections. II, Math. Ann. 289 (1991), no. 3, 465–471. MR 1096182, DOI 10.1007/BF01446583
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; 79 (1964), 205–326. MR 0199184, DOI 10.2307/1970547
- Serge Lang, Hyperbolic and Diophantine analysis, Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 2, 159–205. MR 828820, DOI 10.1090/S0273-0979-1986-15426-1
- Geng Xu, Subvarieties of general hypersurfaces in projective space, J. Differential Geom. 39 (1994), no. 1, 139–172. MR 1258918
- G. Xu, Divisors on hypersurfaces, Math. Zeitschrift 219 (1995), 581–589.
Bibliographic Information
- Geng Xu
- Affiliation: Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218
- Email: geng@math.jhu.edu
- Received by editor(s): August 5, 1995
- Additional Notes: Partially Supported by NSF grant DMS-9401547.
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 2725-2736
- MSC (1991): Primary 14J70, 14B07
- DOI: https://doi.org/10.1090/S0002-9947-96-01613-3
- MathSciNet review: 1348870