On complete nonorientable minimal surfaces with low total curvature
HTML articles powered by AMS MathViewer
- by Francisco J. Lopez
- Trans. Amer. Math. Soc. 348 (1996), 2737-2758
- DOI: https://doi.org/10.1090/S0002-9947-96-01618-2
- PDF | Request permission
Abstract:
We classify complete nonorientable minimal surfaces in $\mathbb {R}$ with total curvature $-8\pi$.References
- E. L. Barbanel, Complete minimal surfaces in $\mathbb {R}^3$ of low total curvature, Thesis, Univ. of Massachusetts, 1987.
- Abdênago Alves de Barros, Complete nonorientable minimal surfaces in $\textbf {R}^3$ with finite total curvature (nonorientable complete minimal immersion/total curvature), An. Acad. Brasil. Ciênc. 59 (1987), no. 3, 141–143 (1988). MR 938563
- Detlef Bloß, Elliptische Funktionen und vollständige Minimalflächen, J. Reine Angew. Math. 444 (1993), 193–220 (German). MR 1241800, DOI 10.1515/crll.1993.444.193
- Chi Cheng Chen and Fritz Gackstatter, Elliptische und hyperelliptische Funktionen und vollständige Minimalflächen vom Enneperschen Typ, Math. Ann. 259 (1982), no. 3, 359–369 (German). MR 661204, DOI 10.1007/BF01456948
- Hershel M. Farkas and Irwin Kra, Riemann surfaces, Graduate Texts in Mathematics, vol. 71, Springer-Verlag, New York-Berlin, 1980. MR 583745, DOI 10.1007/978-1-4684-9930-8
- David Hoffman and William H. Meeks III, Embedded minimal surfaces of finite topology, Ann. of Math. (2) 131 (1990), no. 1, 1–34. MR 1038356, DOI 10.2307/1971506
- T\B{o}ru Ishihara, Complete Möbius strips minimally immersed in $\textbf {R}^3$, Proc. Amer. Math. Soc. 107 (1989), no. 3, 803–806. MR 984797, DOI 10.1090/S0002-9939-1989-0984797-3
- T\B{o}ru Ishihara, Complete nonorientable minimal surfaces in $\textbf {R}^3$, Trans. Amer. Math. Soc. 333 (1992), no. 2, 889–901. MR 1064269, DOI 10.1090/S0002-9947-1992-1064269-5
- Luquésio P. Jorge and William H. Meeks III, The topology of complete minimal surfaces of finite total Gaussian curvature, Topology 22 (1983), no. 2, 203–221. MR 683761, DOI 10.1016/0040-9383(83)90032-0
- Rob Kusner, Conformal geometry and complete minimal surfaces, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 2, 291–295. MR 903735, DOI 10.1090/S0273-0979-1987-15564-9
- —, Global geometry of extremal surfaces, Dissertation, Univ. of California, Berkeley, 1988.
- Francisco J. López, The classification of complete minimal surfaces with total curvature greater than $-12\pi$, Trans. Amer. Math. Soc. 334 (1992), no. 1, 49–74. MR 1058433, DOI 10.1090/S0002-9947-1992-1058433-9
- Francisco J. López, A complete minimal Klein bottle in $\textbf {R}^3$, Duke Math. J. 71 (1993), no. 1, 23–30. MR 1230284, DOI 10.1215/S0012-7094-93-07102-5
- F. J. Lopez and F. Martin, Complete nonorientable minimal surfaces and symmetries, Duke Math. J. 79 (1995), 667–686.
- William H. Meeks III, The classification of complete minimal surfaces in $\textbf {R}^{3}$ with total curvature greater than $-8\pi$, Duke Math. J. 48 (1981), no. 3, 523–535. MR 630583
- M. Elisa G. G. de Oliveira, Some new examples of nonorientable minimal surfaces, Proc. Amer. Math. Soc. 98 (1986), no. 4, 629–636. MR 861765, DOI 10.1090/S0002-9939-1986-0861765-0
- M. Elisa G. G. de Oliveira and Éric Toubiana, Surfaces non-orientables de genre deux, Bol. Soc. Brasil. Mat. (N.S.) 24 (1993), no. 1, 63–88 (French, with English summary). MR 1224300, DOI 10.1007/BF01231696
- Robert Osserman, A survey of minimal surfaces, 2nd ed., Dover Publications, Inc., New York, 1986. MR 852409
- Marty Ross, Complete nonorientable minimal surfaces in $\mathbf R^3$, Comment. Math. Helv. 67 (1992), no. 1, 64–76. MR 1144614, DOI 10.1007/BF02566489
- N. Schmitt, Minimal surfaces with flat ends, Dissertation, Univ. of Massachusetts at Amherst, 1992-1993.
- A. J. Small, Minimal surfaces in $\mathbf R^3$ and algebraic curves, Differential Geom. Appl. 2 (1992), no. 4, 369–384. MR 1243536, DOI 10.1016/0926-2245(92)90003-6
- E. Toubiana, Surfaces minimales non orientables de genre quelconque, Bull. Soc. Math. France 121 (1993), no. 2, 183–195 (French, with English and French summaries). MR 1218472, DOI 10.24033/bsmf.2206
Bibliographic Information
- Francisco J. Lopez
- Affiliation: Departamento de Geometría y Topología, Facultad de Ciencias, Universidad de, Granada, 18071-Granada, Spain
- Email: fjlopez@goliat.ugr.es
- Received by editor(s): March 20, 1995
- Additional Notes: Research partially supported by DGCYT grant No. PB91-0731
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 2737-2758
- MSC (1991): Primary 53A10; Secondary 53C42
- DOI: https://doi.org/10.1090/S0002-9947-96-01618-2
- MathSciNet review: 1351494