The automorphism group of a coded system
HTML articles powered by AMS MathViewer
- by Doris Fiebig and Ulf-Rainer Fiebig
- Trans. Amer. Math. Soc. 348 (1996), 3173-3191
- DOI: https://doi.org/10.1090/S0002-9947-96-01603-0
- PDF | Request permission
Abstract:
We give a general construction of coded systems with an automorphism group isomorphic to $\mathbf {Z}\oplus G$ where $G$ is any preassigned group which has a “continuous block presentation” (the isomorphism will map the shift to $(1,e_G))$. Several applications are given. In particular, we obtain automorphism groups of coded systems which are abelian, which are finitely generated and one which contains $\mathbf {Z}[1/2]$. We show that any group which occurs as a subgroup of the automorphism group of some subshift with periodic points dense already occurs for some synchronized system.References
- Roy L. Adler and Brian Marcus, Topological entropy and equivalence of dynamical systems, Mem. Amer. Math. Soc. 20 (1979), no. 219, iv+84. MR 533691, DOI 10.1090/memo/0219
- Mike Boyle, John Franks, and Bruce Kitchens, Automorphisms of one-sided subshifts of finite type, Ergodic Theory Dynam. Systems 10 (1990), no. 3, 421–449. MR 1074312, DOI 10.1017/S0143385700005678
- F. Blanchard and G. Hansel, Systèmes codés, Theoret. Comput. Sci. 44 (1986), no. 1, 17–49 (French, with English summary). MR 858689, DOI 10.1016/0304-3975(86)90108-8
- Mike Boyle and Wolfgang Krieger, Periodic points and automorphisms of the shift, Trans. Amer. Math. Soc. 302 (1987), no. 1, 125–149. MR 887501, DOI 10.1090/S0002-9947-1987-0887501-5
- Mike Boyle, Douglas Lind, and Daniel Rudolph, The automorphism group of a shift of finite type, Trans. Amer. Math. Soc. 306 (1988), no. 1, 71–114. MR 927684, DOI 10.1090/S0002-9947-1988-0927684-2
- Manfred Denker, Christian Grillenberger, and Karl Sigmund, Ergodic theory on compact spaces, Lecture Notes in Mathematics, Vol. 527, Springer-Verlag, Berlin-New York, 1976. MR 0457675, DOI 10.1007/BFb0082364
- Doris Fiebig and Ulf-Rainer Fiebig, Covers for coded systems, Symbolic dynamics and its applications (New Haven, CT, 1991) Contemp. Math., vol. 135, Amer. Math. Soc., Providence, RI, 1992, pp. 139–179. MR 1185086, DOI 10.1090/conm/135/1185086
- G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320–375. MR 259881, DOI 10.1007/BF01691062
- K. H. Kim, F. W. Roush, and J. B. Wagoner, Automorphisms of the dimension group and gyration numbers, J. Amer. Math. Soc. 5 (1992), no. 1, 191–212. MR 1124983, DOI 10.1090/S0894-0347-1992-1124983-3
- D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge Univ. Press, (to appear).
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory, Second revised edition, Dover Publications, Inc., New York, 1976. Presentations of groups in terms of generators and relations. MR 0422434
- J. Patrick Ryan, The shift and commutivity. II, Math. Systems Theory 8 (1974/75), no. 3, 249–250. MR 383384, DOI 10.1007/BF01762673
- R. F. Williams, Classification of subshifts of finite type, Ann. of Math. (2) 98 (1973), 120–153; errata, ibid. (2) 99 (1974), 380–381. MR 331436, DOI 10.2307/1970908
Bibliographic Information
- Doris Fiebig
- Affiliation: Institut für Angewandte Mathematik, Universität Heidelberg, im Neuenheimer Feld 294, 69120 Heidelberg, Germany
- Email: Fiebig@math.uni-heidelberg.de
- Ulf-Rainer Fiebig
- Affiliation: Institut für Angewandte Mathematik, Universität Heidelberg, im Neuenheimer Feld 294, 69120 Heidelberg, Germany
- Email: Fiebig@math.uni-heidelberg.de
- Received by editor(s): December 13, 1994
- Received by editor(s) in revised form: July 17, 1995
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 3173-3191
- MSC (1991): Primary 58F03, 20B27; Secondary 20E26
- DOI: https://doi.org/10.1090/S0002-9947-96-01603-0
- MathSciNet review: 1348860