On quadratic forms of height two and a theorem of Wadsworth
HTML articles powered by AMS MathViewer
- by Detlev W. Hoffmann
- Trans. Amer. Math. Soc. 348 (1996), 3267-3281
- DOI: https://doi.org/10.1090/S0002-9947-96-01637-6
- PDF | Request permission
Abstract:
Let $\varphi$ and $\psi$ be anisotropic quadratic forms over a field $F$ of characteristic not $2$. Their function fields $F( \varphi )$ and $F(\psi )$ are said to be equivalent (over $F$) if $\varphi \otimes F(\psi )$ and $\psi \otimes F( \varphi )$ are isotropic. We consider the case where $\dim \varphi =2^n$ and $\varphi$ is divisible by an $(n-2)$-fold Pfister form. We determine those forms $\psi$ for which $\varphi$ becomes isotropic over $F(\psi )$ if $n\leq 3$, and provide partial results for $n\geq 4$. These results imply that if $F( \varphi )$ and $F(\psi )$ are equivalent and $\dim \varphi =\dim \psi$, then $\varphi$ is similar to $\psi$ over $F$. This together with already known results yields that if $\varphi$ is of height $2$ and degree $1$ or $2$, and if $\dim \varphi =\dim \psi$, then $F( \varphi )$ and $F(\psi )$ are equivalent iff $F( \varphi )$ and $F(\psi )$ are isomorphic over $F$.References
- Jón Kr. Arason and Manfred Knebusch, Über die Grade quadratischer Formen, Math. Ann. 234 (1978), no. 2, 167–192 (German). MR 506027, DOI 10.1007/BF01420967
- H. Ahmad and J. Ohm, Function fields of Pfister neighbors, J. Algebra. 178 (1995), 653–664.
- Richard Elman and T. Y. Lam, Pfister forms and $K$-theory of fields, J. Algebra 23 (1972), 181–213. MR 302739, DOI 10.1016/0021-8693(72)90054-3
- Richard Elman and T. Y. Lam, Quadratic forms and the $u$-invariant. II, Invent. Math. 21 (1973), 125–137. MR 417053, DOI 10.1007/BF01389692
- Richard Elman, T. Y. Lam, and Adrian R. Wadsworth, Amenable fields and Pfister extensions, Conference on Quadratic Forms—1976 (Proc. Conf., Queen’s Univ., Kingston, Ont., 1976) Queen’s Papers in Pure and Appl. Math., No. 46, Queen’s Univ., Kingston, Ont., 1977, pp. 445–492. With an appendix “Excellence of $F(\varphi )/F$ for 2-fold Pfister forms” by J. K. Arason. MR 0560497
- R. Elman, T. Y. Lam, and A. R. Wadsworth, Function fields of Pfister forms, Invent. Math. 51 (1979), no. 1, 61–75. MR 524277, DOI 10.1007/BF01389912
- Robert W. Fitzgerald, Quadratic forms of height two, Trans. Amer. Math. Soc. 283 (1984), no. 1, 339–351. MR 735427, DOI 10.1090/S0002-9947-1984-0735427-7
- D. W. Hoffmann, Function Fields of Quadratic Forms, Ph.D. thesis, University of California, Berkeley, California 1992.
- —, Isotropy of $5$-dimensional quadratic forms over the function field of a quadric, Proceedings of the 1992 Santa Barbara Summer Research Institute on Quadratic Forms and Division Algebras, Proc. Symp. Pure Math. 58.2 (1995), 217–225.
- Detlev W. Hoffmann, On $6$-dimensional quadratic forms isotropic over the function field of a quadric, Comm. Algebra 22 (1994), no. 6, 1999–2014. MR 1268540, DOI 10.1080/00927879408824952
- —, Isotropy of quadratic forms over the function field of a quadric, Math. Z. 220 (1995), 461–476.
- D. W. Hoffmann, D. W. Lewis, and J. Van Geel, Minimal forms for function fields of conics, Proceedings of the 1992 Santa Barbara Summer Research Institute on Quadratic Forms and Division Algebras, Proc. Symp. Pure Math. 58.2 (1995), 227–237.
- J. Hurrelbrink and U. Rehmann, Splitting patterns of quadratic forms, Math. Nachr. 176 (1995), 111–127.
- O.T. Izhboldin, On the nonexcellence of field extensions $F(\pi )/F$, preprint (1995).
- B. Kahn, Formes quadratiques de hauteur et de degré $2$, to appear in: Indag. Math.
- Manfred Knebusch, Generic splitting of quadratic forms. I, Proc. London Math. Soc. (3) 33 (1976), no. 1, 65–93. MR 412101, DOI 10.1112/plms/s3-33.1.65
- Manfred Knebusch, Generic splitting of quadratic forms. II, Proc. London Math. Soc. (3) 34 (1977), no. 1, 1–31. MR 427345, DOI 10.1112/plms/s3-34.1.1
- T. Y. Lam, The algebraic theory of quadratic forms, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass., 1973. MR 0396410
- D. Leep, Function field results, handwritten notes taken by T. Y. Lam (1989).
- Pasquale Mammone and Daniel B. Shapiro, The Albert quadratic form for an algebra of degree four, Proc. Amer. Math. Soc. 105 (1989), no. 3, 525–530. MR 931742, DOI 10.1090/S0002-9939-1989-0931742-2
- J. Ohm, The Zariski problem for function fields of quadratic forms, to appear in: Proc. Amer. Math. Soc.
- Winfried Scharlau, Quadratic and Hermitian forms, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 270, Springer-Verlag, Berlin, 1985. MR 770063, DOI 10.1007/978-3-642-69971-9
- Adrian R. Wadsworth, Similarity of quadratic forms and isomorphism of their function fields, Trans. Amer. Math. Soc. 208 (1975), 352–358. MR 376527, DOI 10.1090/S0002-9947-1975-0376527-8
Bibliographic Information
- Detlev W. Hoffmann
- Affiliation: Aindorferstr. 84, D-80689 Munich, Germany
- Address at time of publication: Laboratoire de Mathématiques, Faculté des Sciences, Université de Franche-Comté, 25030 Besançon Cedex, France
- Email: detlev@math.univ-fcomte.fr
- Received by editor(s): December 2, 1994
- Received by editor(s) in revised form: October 16, 1995
- Additional Notes: This research has been carried out during the author’s stay at the Department of Mathematics at the University of Kentucky, Lexington, Kentucky, during the academic year 1994/95.
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 3267-3281
- MSC (1991): Primary 11E04, 11E81, 12F20
- DOI: https://doi.org/10.1090/S0002-9947-96-01637-6
- MathSciNet review: 1355298