Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On multiplicities in polynomial system solving


Authors: M. G. Marinari, H. M. Möller and T. Mora
Journal: Trans. Amer. Math. Soc. 348 (1996), 3283-3321
MSC (1991): Primary 14M05, 13P99, 13H15, 14B10
DOI: https://doi.org/10.1090/S0002-9947-96-01671-6
MathSciNet review: 1360228
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper deals with the description of the solutions of zero dimensional systems of polynomial equations. Based on different models for describing solutions, we consider suitable representations of a multiple root, or more precisely suitable descriptions of the primary component of the system at a root. We analyse the complexity of finding the representations and of algorithms which perform transformations between the different representations.


References [Enhancements On Off] (What's this?)

  • M. E. Alonso, E. Becker, M.-F. Roy, T. Wörmann, Zeroes, multiplicities and idempotents for zerodimensional systems, Proc. MEGA ’94 (to appear).
  • D. Duval, Diverses questions relatives au calcul formel avec de nombres algebriques, These d’Etat, Grenoble (1987).
  • J. C. Faugère, P. Gianni, D. Lazard, T. Mora, Efficient computation of zero-dimensional Gröbner bases by change of ordering, J. Symbolic Comp. 16 (1993), 329–344.
  • André Galligo, À propos du théorème de-préparation de Weierstrass, Fonctions de plusieurs variables complexes (Sém. François Norguet, octobre 1970–décembre 1973; à la mémoire d’André Martineau), Springer, Berlin, 1974, pp. 543–579. Lecture Notes in Math., Vol. 409 (French). Thèse de 3ème cycle soutenue le 16 mai 1973 à l’Institut de Mathématique et Sciences Physiques de l’Université de Nice. MR 0402102
  • Patrizia Gianni and Teo Mora, Algebraic solution of systems of polynomial equations using Groebner bases, Applied algebra, algebraic algorithms and error-correcting codes (Menorca, 1987) Lecture Notes in Comput. Sci., vol. 356, Springer, Berlin, 1989, pp. 247–257. MR 1008541, DOI https://doi.org/10.1007/3-540-51082-6_83
  • Patrizia Gianni, Victor Miller, and Barry Trager, Decomposition of algebras, Symbolic and algebraic computation (Rome, 1988) Lecture Notes in Comput. Sci., vol. 358, Springer, Berlin, 1989, pp. 300–308. MR 1034741, DOI https://doi.org/10.1007/3-540-51084-2_29
  • Wolfgang Gröbner, Algebraische Geometrie. $2$. Teil: Arithmetische Theorie der Polynomringe, Bibliographisches Institut, Mannheim-Vienna-Zurich, 1970 (German). B. I. Hochschultaschenbücher, 737/737a$^{\ast }$. MR 0330161
  • Patrizia Gianni, Barry Trager, and Gail Zacharias, Gröbner bases and primary decomposition of polynomial ideals, J. Symbolic Comput. 6 (1988), no. 2-3, 149–167. Computational aspects of commutative algebra. MR 988410, DOI https://doi.org/10.1016/S0747-7171%2888%2980040-3
  • A. C. Hearn, REDUCE User’s Manual, Version 3.3, Rand Corp., 1987.
  • Y. N. Lakshman, A single exponential bound on the complexity of computing Gröbner bases of zero-dimensional ideals, Effective methods in algebraic geometry (Castiglioncello, 1990) Progr. Math., vol. 94, Birkhäuser Boston, Boston, MA, 1991, pp. 227–234. MR 1106425
  • Y. N. Lakshman and Daniel Lazard, On the complexity of zero-dimensional algebraic systems, Effective methods in algebraic geometry (Castiglioncello, 1990) Progr. Math., vol. 94, Birkhäuser Boston, Boston, MA, 1991, pp. 217–225. MR 1106424
  • D. Lazard, Solving zero-dimensional algebraic systems, J. Symb. Comp. 13 (1989), 117 – 131.
  • D. Lazard, Systems of algebraic equations (algorithms and complexity), Computational algebraic geometry and commutative algebra (Cortona, 1991) Sympos. Math., XXXIV, Cambridge Univ. Press, Cambridge, 1993, pp. 84–105. MR 1253989
  • H. Michael Möller, On decomposing systems of polynomial equations with finitely many solutions, Appl. Algebra Engrg. Comm. Comput. 4 (1993), no. 4, 217–230. MR 1235857, DOI https://doi.org/10.1007/BF01200146
  • M. G. Marinari, H. M. Möller, and T. Mora, Gröbner bases of ideals defined by functionals with an application to ideals of projective points, Appl. Algebra Engrg. Comm. Comput. 4 (1993), no. 2, 103–145. MR 1223853, DOI https://doi.org/10.1007/BF01386834
  • H. M. Möller, H. J. Stetter, Multivariate polynomial equations with multiple zeros solved by matrix eigenproblems, Numer. Math. 70 (1995), 311–329.
  • Teo Mora, La queste del Saint ${\rm Gr}_a(AL)$: a computational approach to local algebra, Discrete Appl. Math. 33 (1991), no. 1-3, 161–190. Applied algebra, algebraic algorithms, and error-correcting codes (Toulouse, 1989). MR 1137744, DOI https://doi.org/10.1016/0166-218X%2891%2990114-C
  • T. Mora, C. Traverso, Natural representation of algebraic numbers, in preparation.
  • A. Yu. Zharkov, Yu. A. Blinkov, Involutive approach to solving systems of algebraic equations, Proc. IMACS ’93, 11 – 16.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 14M05, 13P99, 13H15, 14B10

Retrieve articles in all journals with MSC (1991): 14M05, 13P99, 13H15, 14B10


Additional Information

M. G. Marinari
Affiliation: Department of Mathematics, University of Genova, 16132, Genova, Italy

H. M. Möller
Affiliation: FernUniversität, FB Mathematik, B Informatik, 5800 Hagen 1, Germany

T. Mora
Affiliation: Department of Mathematics, University of Genova, 16132, Genova, Italy

Received by editor(s): December 20, 1994
Additional Notes: The first author was partially supported by European Community contract CHRX-CT94-0506.
Article copyright: © Copyright 1996 American Mathematical Society