Cohomology of the complement of a free divisor
HTML articles powered by AMS MathViewer
- by Francisco J. Castro-Jiménez, Luis Narváez-Macarro and David Mond
- Trans. Amer. Math. Soc. 348 (1996), 3037-3049
- DOI: https://doi.org/10.1090/S0002-9947-96-01690-X
- PDF | Request permission
Abstract:
We prove that if $D$ is a “strongly quasihomogeneous" free divisor in the Stein manifold $X$, and $U$ is its complement, then the de Rham cohomology of $U$ can be computed as the cohomology of the complex of meromorphic differential forms on $X$ with logarithmic poles along $D$, with exterior derivative. The class of strongly quasihomogeneous free divisors, introduced here, includes free hyperplane arrangements and the discriminants of stable mappings in Mather’s nice dimensions (and in particular the discriminants of Coxeter groups).References
- E. Brieskorn, Singular elements of semi-simple algebraic groups, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 279–284. MR 0437798
- Egbert Brieskorn, Sur les groupes de tresses [d’après V. I. Arnol′d], Séminaire Bourbaki, 24ème année (1971/1972), Lecture Notes in Math., Vol. 317, Springer, Berlin, 1973, pp. Exp. No. 401, pp. 21–44 (French). MR 0422674
- Robert Ephraim, Isosingular loci and the Cartesian product structure of complex analytic singularities, Trans. Amer. Math. Soc. 241 (1978), 357–371. MR 492307, DOI 10.1090/S0002-9947-1978-0492307-X
- A. Grothendieck, On the de Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 95–103. MR 199194, DOI 10.1007/BF02684807
- Robin Hartshorne, Local cohomology, Lecture Notes in Mathematics, No. 41, Springer-Verlag, Berlin-New York, 1967. A seminar given by A. Grothendieck, Harvard University, Fall, 1961. MR 0224620, DOI 10.1007/BFb0073971
- E. J. N. Looijenga, Isolated singular points on complete intersections, London Mathematical Society Lecture Note Series, vol. 77, Cambridge University Press, Cambridge, 1984. MR 747303, DOI 10.1017/CBO9780511662720
- John N. Mather, Stability of $C^{\infty }$ mappings. III. Finitely determined mapgerms, Inst. Hautes Études Sci. Publ. Math. 35 (1968), 279–308. MR 275459
- John N. Mather, Stability of $C^{\infty }$ mappings. III. Finitely determined mapgerms, Inst. Hautes Études Sci. Publ. Math. 35 (1968), 279–308. MR 275459
- Bernd Wegner, Decktransformationen transnormaler Mannigfaltigkeiten, Manuscripta Math. 4 (1971), 179–199 (German, with English summary). MR 293650, DOI 10.1007/BF01169411
- D. G. Northcott, Injective envelopes and inverse polynomials, J. London Math. Soc. (2) 8 (1974), 290–296. MR 360555, DOI 10.1112/jlms/s2-8.2.290
- Peter Orlik and Hiroaki Terao, Arrangements of hyperplanes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer-Verlag, Berlin, 1992. MR 1217488, DOI 10.1007/978-3-662-02772-1
- Kyoji Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 2, 265–291. MR 586450
- C. T. C. Wall, Finite determinacy of smooth map-germs, Bull. London Math. Soc. 13 (1981), no. 6, 481–539. MR 634595, DOI 10.1112/blms/13.6.481
Bibliographic Information
- Francisco J. Castro-Jiménez
- Affiliation: Departamento de Álgebra, Computación, Geometría y Topología, Facultad de Matemáticas, Universidad de Sevilla, Apdo. 1160, 41012 Sevilla, Spain
- Email: castro@atlas.us.es
- Luis Narváez-Macarro
- Affiliation: Departamento de Álgebra, Computación, Geometría y Topología, Facultad de Matemáticas, Universidad de Sevilla, Apdo. 1160, 41012 Sevilla, Spain
- Email: narvaez@atlas.us.es
- David Mond
- Affiliation: Mathematics Institute, University of Warwick, Coventry CV4 7AL, England
- Email: mond@maths.warwick.ac.uk
- Received by editor(s): November 4, 1994
- Additional Notes: The first two authors were supported by DGICYT PB94-1435.
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 3037-3049
- MSC (1991): Primary 32S20, 32S25, 14F40; Secondary 52B30, 58C27
- DOI: https://doi.org/10.1090/S0002-9947-96-01690-X
- MathSciNet review: 1363009