Packing measure of the sample paths of fractional Brownian motion
HTML articles powered by AMS MathViewer
- by Yimin Xiao
- Trans. Amer. Math. Soc. 348 (1996), 3193-3213
- DOI: https://doi.org/10.1090/S0002-9947-96-01712-6
- PDF | Request permission
Abstract:
Let $X(t) (t \in \mathbf {R})$ be a fractional Brownian motion of index $\alpha$ in $\mathbf {R}^d.$ If $1 < \alpha d$, then there exists a positive finite constant $K$ such that with probability 1, \[ \phi -p(X([0,t])) = Kt\quad \text {for any $t > 0$}, \] where $\phi (s) = s^{\frac 1 { \alpha }}/ (\log \log \frac 1 s)^{\frac 1 {2 \alpha }}$ and $\phi$-$p (X([0,t]))$ is the $\phi$-packing measure of $X([0,t])$.References
- Z. Ciesielski and S. J. Taylor, First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path, Trans. Amer. Math. Soc. 103 (1962), 434–450. MR 143257, DOI 10.1090/S0002-9947-1962-0143257-8
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Kenneth Falconer, Fractal geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR 1102677
- Bert E. Fristedt and S. James Taylor, The packing measure of a general subordinator, Probab. Theory Related Fields 92 (1992), no. 4, 493–510. MR 1169016, DOI 10.1007/BF01274265
- Jean-Pierre Kahane, Some random series of functions, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 5, Cambridge University Press, Cambridge, 1985. MR 833073
- P. Erdös and T. Grünwald, On polynomials with only real roots, Ann. of Math. (2) 40 (1939), 537–548. MR 7, DOI 10.2307/1968938
- Michel Ledoux and Michel Talagrand, Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 23, Springer-Verlag, Berlin, 1991. Isoperimetry and processes. MR 1102015, DOI 10.1007/978-3-642-20212-4
- J.-F. Le Gall and S. James Taylor, The packing measure of planar Brownian motion, Seminar on stochastic processes, 1986 (Charlottesville, Va., 1986) Progr. Probab. Statist., vol. 13, Birkhäuser Boston, Boston, MA, 1987, pp. 139–147. MR 902430
- M. B. Marcus, Hölder conditions for Gaussian processes with stationary increments, Trans. Amer. Math. Soc. 134 (1968), 29–52. MR 230368, DOI 10.1090/S0002-9947-1968-0230368-7
- Loren D. Pitt, Local times for Gaussian vector fields, Indiana Univ. Math. J. 27 (1978), no. 2, 309–330. MR 471055, DOI 10.1512/iumj.1978.27.27024
- Loren D. Pitt and Lanh Tat Tran, Local sample path properties of Gaussian fields, Ann. Probab. 7 (1979), no. 3, 477–493. MR 528325
- Sidney C. Port and Charles J. Stone, Brownian motion and classical potential theory, Probability and Mathematical Statistics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 0492329
- Fraydoun Rezakhanlou and S. James Taylor, The packing measure of the graph of a stable process, Astérisque 157-158 (1988), 341–362. Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau, 1987). MR 976226
- Xavier Saint Raymond and Claude Tricot, Packing regularity of sets in $n$-space, Math. Proc. Cambridge Philos. Soc. 103 (1988), no. 1, 133–145. MR 913458, DOI 10.1017/S0305004100064690
- Keizo Takashima, Sample path properties of ergodic self-similar processes, Osaka J. Math. 26 (1989), no. 1, 159–189. MR 991287
- Talagrand, M., Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Ann. of Probab. 23 (1995) 767 - 775.
- Talagrand, M., Lower classes for fractional Brownian motion. J. Theoret Probab. 9 (1996) 191–213.
- S. James Taylor, The use of packing measure in the analysis of random sets, Stochastic processes and their applications (Nagoya, 1985) Lecture Notes in Math., vol. 1203, Springer, Berlin, 1986, pp. 214–222. MR 872112, DOI 10.1007/BFb0076883
- S. James Taylor, The measure theory of random fractals, Math. Proc. Cambridge Philos. Soc. 100 (1986), no. 3, 383–406. MR 857718, DOI 10.1017/S0305004100066160
- S. James Taylor and Claude Tricot, Packing measure, and its evaluation for a Brownian path, Trans. Amer. Math. Soc. 288 (1985), no. 2, 679–699. MR 776398, DOI 10.1090/S0002-9947-1985-0776398-8
Bibliographic Information
- Yimin Xiao
- Affiliation: Department of Mathematics, The Ohio State University, Columbus, Ohio 43210
- Address at time of publication: Department of Mathematic, University of Utah, Salt Lake City, Utah 84112
- Received by editor(s): August 2, 1995
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 3193-3213
- MSC (1991): Primary 60G15, 60G17
- DOI: https://doi.org/10.1090/S0002-9947-96-01712-6
- MathSciNet review: 1370655