Topological entropy of standard type monotone twist maps
HTML articles powered by AMS MathViewer
- by Oliver Knill PDF
- Trans. Amer. Math. Soc. 348 (1996), 2999-3013 Request permission
Abstract:
We study invariant measures of families of monotone twist maps $S_{\gamma }(q,p)$ $=$ $(2q-p+ \gamma \cdot V’(q),q)$ with periodic Morse potential $V$. We prove that there exist a constant $C=C(V)$ such that the topological entropy satisfies $h_{top}(S_{\gamma }) \geq \log (C \cdot \gamma )/3$. In particular, $h_{top}(S_{\gamma }) \to \infty$ for $|\gamma | \to \infty$. We show also that there exist arbitrary large $\gamma$ such that $S_{\gamma }$ has nonuniformly hyperbolic invariant measures $\mu _{\gamma }$ with positive metric entropy. For large $\gamma$, the measures $\mu _{\gamma }$ are hyperbolic and, for a class of potentials which includes $V(q)=\sin (q)$, the Lyapunov exponent of the map $S$ with invariant measure $\mu _{\gamma }$ grows monotonically with $\gamma$.References
- Sigurd B. Angenent, Monotone recurrence relations, their Birkhoff orbits and topological entropy, Ergodic Theory Dynam. Systems 10 (1990), no. 1, 15–41. MR 1053797, DOI 10.1017/S014338570000537X
- Sigurd B. Angenent, A remark on the topological entropy and invariant circles of an area preserving twistmap, Twist mappings and their applications, IMA Vol. Math. Appl., vol. 44, Springer, New York, 1992, pp. 1–5. MR 1219347, DOI 10.1007/978-1-4613-9257-6_{1}
- Serge Aubry and Gilles Abramovici, Chaotic trajectories in the standard map. The concept of anti-integrability, Phys. D 43 (1990), no. 2-3, 199–219. MR 1067910, DOI 10.1016/0167-2789(90)90133-A
- Serge J. Aubry, The concept of anti-integrability: definition, theorems and applications to the standard map, Twist mappings and their applications, IMA Vol. Math. Appl., vol. 44, Springer, New York, 1992, pp. 7–54. MR 1219348, DOI 10.1007/978-1-4613-9257-6_{2}
- S. Aubry, R. S. MacKay, and C. Baesens, Equivalence of uniform hyperbolicity for symplectic twist maps and phonon gap for Frenkel-Kontorova models, Phys. D 56 (1992), no. 2-3, 123–134. MR 1164392, DOI 10.1016/0167-2789(92)90019-J
- S. Aubry. Anti-integrability in dynamical and variational problems, Physica D 86:284–296, 1995. . [Added in Proof]
- V. Bangert, Mather sets for twist maps and geodesics on tori, Dynamics reported, Vol. 1, Dynam. Report. Ser. Dynam. Systems Appl., vol. 1, Wiley, Chichester, 1988, pp. 1–56. MR 945963
- Rufus Bowen and David Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), no. 3, 181–202. MR 380889, DOI 10.1007/BF01389848
- M. Brown and W. D. Neumann, Proof of the Poincaré-Birkhoff fixed point theorem, Michigan Math. J. 24 (1977), no. 1, 21–31. MR 448339, DOI 10.1307/mmj/1029001816
- H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Springer Study Edition, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987. MR 883643, DOI 10.1007/978-3-540-77522-5
- Manfred Denker, Christian Grillenberger, and Karl Sigmund, Ergodic theory on compact spaces, Lecture Notes in Mathematics, Vol. 527, Springer-Verlag, Berlin-New York, 1976. MR 0457675, DOI 10.1007/BFb0082364
- Pedro Duarte, Plenty of elliptic islands for the standard family of area preserving maps, Ann. Inst. H. Poincaré C Anal. Non Linéaire 11 (1994), no. 4, 359–409 (English, with English and French summaries). MR 1287238, DOI 10.1016/S0294-1449(16)30180-9
- Albert Fathi, Expansiveness, hyperbolicity and Hausdorff dimension, Comm. Math. Phys. 126 (1989), no. 2, 249–262. MR 1027497, DOI 10.1007/BF02125125
- E. Fontich, Transversal homoclinic points of a class of conservative diffeomorphisms, J. Differential Equations 87 (1990), no. 1, 1–27. MR 1070024, DOI 10.1016/0022-0396(90)90012-E
- Shmuel Friedland and John Milnor, Dynamical properties of plane polynomial automorphisms, Ergodic Theory Dynam. Systems 9 (1989), no. 1, 67–99. MR 991490, DOI 10.1017/S014338570000482X
- Michael-R. Herman, Sur les courbes invariantes par les difféomorphismes de l’anneau. Vol. 1, Astérisque, vol. 103, Société Mathématique de France, Paris, 1983 (French). With an appendix by Albert Fathi; With an English summary. MR 728564
- A. Jakobsen and O. Knill. Iteration of the coupled map lattice construction, Phys. Lett. A 205:179–183, 1995. . [Added in Proof]
- A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 51 (1980), 137–173. MR 573822, DOI 10.1007/BF02684777
- A. Katok, Some remarks of Birkhoff and Mather twist map theorems, Ergodic Theory Dynam. Systems 2 (1982), no. 2, 185–194 (1983). MR 693974, DOI 10.1017/s0143385700001504
- Oliver Knill, Isospectral deformations of random Jacobi operators, Comm. Math. Phys. 151 (1993), no. 2, 403–426. MR 1204776, DOI 10.1007/BF02096774
- O. Knill. Isospectral deformation of discrete random Laplacians. In “On Three Levels", Ed.: M.Fannes et al., Plenum Press, New York, 1994, pp. 312–330.
- V. F. Lazutkin and D. Ya. Terman, Percival variational principle for invariant measures and commensurate-incommensurate phase transitions in one-dimensional chains, Comm. Math. Phys. 94 (1984), no. 4, 511–522. MR 763749, DOI 10.1007/BF01403884
- Ricardo Mañé, Ergodic theory and differentiable dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 8, Springer-Verlag, Berlin, 1987. Translated from the Portuguese by Silvio Levy. MR 889254, DOI 10.1007/978-3-642-70335-5
- John N. Mather, Existence of quasiperiodic orbits for twist homeomorphisms of the annulus, Topology 21 (1982), no. 4, 457–467. MR 670747, DOI 10.1016/0040-9383(82)90023-4
- John N. Mather, Amount of rotation about a point and the Morse index, Comm. Math. Phys. 94 (1984), no. 2, 141–153. MR 761791, DOI 10.1007/BF01209299
- Jürgen Moser, Stable and random motions in dynamical systems, Annals of Mathematics Studies, No. 77, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1973. With special emphasis on celestial mechanics; Hermann Weyl Lectures, the Institute for Advanced Study, Princeton, N. J. MR 0442980
- Sheldon E. Newhouse, Continuity properties of entropy, Ann. of Math. (2) 129 (1989), no. 2, 215–235. MR 986792, DOI 10.2307/1971492
- Donald Ornstein, Two Bernoulli shifts with infinite entropy are isomorphic, Advances in Math. 5 (1970), 339–348 (1970). MR 274716, DOI 10.1016/0001-8708(70)90008-3
- I. C. Percival, Variational principles for invariant tori and cantori, Nonlinear dynamics and the beam-beam interaction (Sympos., Brookhaven Nat. Lab., New York, 1979) AIP Conf. Proc., vol. 57, Amer. Inst. Physics, New York, 1980, pp. 302–310. MR 624989
- Karl Petersen, Ergodic theory, Cambridge Studies in Advanced Mathematics, vol. 2, Cambridge University Press, Cambridge, 1983. MR 833286, DOI 10.1017/CBO9780511608728
- Lai Sang Young, On the prevalence of horseshoes, Trans. Amer. Math. Soc. 263 (1981), no. 1, 75–88. MR 590412, DOI 10.1090/S0002-9947-1981-0590412-0
Additional Information
- Oliver Knill
- Affiliation: Division of Physics, Mathematics and Astronomy, California Institute of Technology, 91125 Pasadena, California
- Email: knill@cco.caltech.edu
- Received by editor(s): July 25, 1994
- Additional Notes: This material is based upon work which was supported by the National Science Foundation under Grant No. DMS-9101715. The Government has certain rights in this material.
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 2999-3013
- MSC (1991): Primary 58F11, 28D20, 28D10; Secondary 58E30, 58F05
- DOI: https://doi.org/10.1090/S0002-9947-96-01728-X
- MathSciNet review: 1373642