Krull-Schmidt theorems in dimension 1
HTML articles powered by AMS MathViewer
- by Lawrence S. Levy and Charles J. Odenthal
- Trans. Amer. Math. Soc. 348 (1996), 3391-3455
- DOI: https://doi.org/10.1090/S0002-9947-96-01619-4
- PDF | Request permission
Abstract:
Let $\Lambda$ be a semiprime, module-finite algebra over a commutative noetherian ring $R$ of Krull dimension 1. We find necessary and sufficient conditions for the Krull-Schmidt theorem to hold for all finitely generated $\Lambda$-modules, and necessary and sufficient conditions for the Krull-Schmidt theorem to hold for all finitely generated torsionfree $\Lambda$-modules (called “$\Lambda$-lattices” in integral representation theory, and “maximal Cohen-Macaulay modules” in the dimension-one situation in commutative algebra).References
- Hyman Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488. MR 157984, DOI 10.1090/S0002-9947-1960-0157984-8
- Nicolas Bourbaki, Elements of mathematics. Commutative algebra, Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass., 1972. Translated from the French. MR 0360549
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders. MR 632548
- E. Graham Evans Jr., Krull-Schmidt and cancellation over local rings, Pacific J. Math. 46 (1973), 115–121. MR 323815, DOI 10.2140/pjm.1973.46.115
- E. L. Green and I. Reiner, Integral representations and diagrams, Michigan Math. J. 25 (1978), no. 1, 53–84. MR 497882, DOI 10.1307/mmj/1029002006
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. 24 (1965), 231 (French). MR 199181
- Robert M. Guralnick and Lawrence S. Levy, Presentations of modules when ideals need not be principal, Illinois J. Math. 32 (1988), no. 4, 593–653. MR 955382
- Robert M. Guralnick and Lawrence S. Levy, Cancellation and direct summands in dimension $1$, J. Algebra 142 (1991), no. 2, 310–347. MR 1127066, DOI 10.1016/0021-8693(91)90310-5
- Alex Heller, On group representations over a valuation ring, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1194–1197. MR 125163, DOI 10.1073/pnas.47.8.1194
- M. Hochster, Non-openness of loci in Noetherian rings, Duke Math. J. 40 (1973), 215–219. MR 311653, DOI 10.1215/S0012-7094-73-04020-9
- H. Jacobinski, Genera and decompositions of lattices over orders, Acta Math. 121 (1968), 1–29. MR 251063, DOI 10.1007/BF02391907
- H. Jacobinski, Unique decomposition of lattices over orders, Proceedings of the International Conference on Representations of Algebras (Carleton Univ., Ottawa, Ont., 1974) Carleton Math. Lecture Notes, No. 9, Carleton Univ., Ottawa, Ont., 1974, pp. Paper No. 15, 9. MR 0364334
- Albert Eagle, Series for all the roots of a trinomial equation, Amer. Math. Monthly 46 (1939), 422–425. MR 5, DOI 10.2307/2303036
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021
- Lee Klingler and Lawrence S. Levy, Direct-sum cancellation: modules versus lattices, Comm. Algebra 18 (1990), no. 6, 1857–1868. MR 1071077, DOI 10.1080/00927879008823997
- Lawrence S. Levy, Modules over pullbacks and subdirect sums, J. Algebra 71 (1981), no. 1, 50–61. MR 627425, DOI 10.1016/0021-8693(81)90106-X
- Lawrence S. Levy, Direct-sum cancellation and genus class groups, Methods in module theory (Colorado Springs, CO, 1991) Lecture Notes in Pure and Appl. Math., vol. 140, Dekker, New York, 1993, pp. 203–218. MR 1203808
- L. S. Levy and C. J. Odenthal, “Package deal theorems and splitting orders, in dimension 1”, Trans. Amer. Math. Soc. 348 (1996), 3457–3503.
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572
- Irving Reiner, The Krull-Schmidt theorem for integral group representations, Bull. Amer. Math. Soc. 67 (1961), 365–367. MR 138689, DOI 10.1090/S0002-9904-1961-10619-8
- Irving Reiner, Failure of the Krull-Schmidt theorem for integral representations, Michigan Math. J. 9 (1962), 225–231. MR 144942
- I. Reiner, Maximal orders, London Mathematical Society Monographs, No. 5, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1975. MR 0393100
- Klaus W. Roggenkamp, Das Krull-Schmidt Theorem für projektive Gitter über lokalen Ringen, Mitt. Math. Sem. Giessen 80 (1969), 29–50 (German). MR 255598
- R. B. Warfield Jr., Cancellation of modules and groups and stable range of endomorphism rings, Pacific J. Math. 91 (1980), no. 2, 457–485. MR 615693, DOI 10.2140/pjm.1980.91.457
- Roger Wiegand, Noetherian rings of bounded representation type, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 497–516. MR 1015536, DOI 10.1007/978-1-4612-3660-3_{2}7
Bibliographic Information
- Lawrence S. Levy
- Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706-1388
- Email: levy@math.wisc.edu
- Charles J. Odenthal
- Affiliation: Department of Mathematics, University of Toledo, Toledo, Ohio 43606-3390
- Email: codentha@math.utoledo.edu
- Received by editor(s): April 11, 1994
- Received by editor(s) in revised form: September 25, 1995
- Additional Notes: Levy’s research was partially supported by NSF and NSA grants.
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 3391-3455
- MSC (1991): Primary 16P40; Secondary 13E05
- DOI: https://doi.org/10.1090/S0002-9947-96-01619-4
- MathSciNet review: 1351492