Multi-bump orbits homoclinic to resonance bands
HTML articles powered by AMS MathViewer
- by Tasso J. Kaper and Gregor Kovacic
- Trans. Amer. Math. Soc. 348 (1996), 3835-3887
- DOI: https://doi.org/10.1090/S0002-9947-96-01527-9
- PDF | Request permission
Abstract:
We establish the existence of several classes of multi-bump orbits homoclinic to resonance bands for completely-integrable Hamiltonian systems subject to small-amplitude Hamiltonian or dissipative perturbations. Each bump is a fast excursion away from the resonance band, and the bumps are interspersed with slow segments near the resonance band. The homoclinic orbits, which include multi-bump Šilnikov orbits, connect equilibria and periodic orbits in the resonance band. The main tools we use in the existence proofs are the exchange lemma with exponentially small error and the existence theory of orbits homoclinic to resonance bands which make only one fast excursion away from the resonance bands.References
- D. V. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature. , Proceedings of the Steklov Institute of Mathematics, No. 90 (1967), American Mathematical Society, Providence, R.I., 1969. Translated from the Russian by S. Feder. MR 0242194
- V. I. Arnol′d, Instability of dynamical systems with many degrees of freedom, Dokl. Akad. Nauk SSSR 156 (1964), 9–12 (Russian). MR 0163026
- V. I. Arnol′d, Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian, Uspehi Mat. Nauk 18 (1963), no. 5 (113), 13–40 (Russian). MR 0163025
- Dynamical systems. III, 2nd ed., Encyclopaedia of Mathematical Sciences, vol. 3, Springer-Verlag, Berlin, 1993. Mathematical aspects of classical and celestial mechanics; A translation of Current problems in mathematics. Fundamental directions, Vol. 3 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1985 [ MR0833508 (87i:58151)]; Translation by A. Iacob; Translation edited by V. I. Arnol′d. MR 1292465
- S. Aubry and P. Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions. I. Exact results for the ground-states, Phys. D 8 (1983), no. 3, 381–422. MR 719634, DOI 10.1016/0167-2789(83)90233-6
- Shui Nee Chow, Jack K. Hale, and John Mallet-Paret, An example of bifurcation to homoclinic orbits, J. Differential Equations 37 (1980), no. 3, 351–373. MR 589997, DOI 10.1016/0022-0396(80)90104-7
- W. A. Coppel, Dichotomies in stability theory, Lecture Notes in Mathematics, Vol. 629, Springer-Verlag, Berlin-New York, 1978. MR 0481196
- Stephen P. Diliberto, Perturbation theorems for periodic surfaces. I. Definitions and main theorems, Rend. Circ. Mat. Palermo (2) 9 (1960), 265–299. MR 142852, DOI 10.1007/BF02851248
- Stephen P. Diliberto, Perturbation theorems for periodic surfaces. I. Definitions and main theorems, Rend. Circ. Mat. Palermo (2) 9 (1960), 265–299. MR 142852, DOI 10.1007/BF02851248
- Wiktor Eckhaus, Matched asymptotic expansions and singular perturbations, North-Holland Mathematics Studies, No. 6, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. MR 0670800
- Neil Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J. 21 (1971/72), 193–226. MR 287106, DOI 10.1512/iumj.1971.21.21017
- Neil Fenichel, Asymptotic stability with rate conditions, Indiana Univ. Math. J. 23 (1973/74), 1109–1137. MR 339276, DOI 10.1512/iumj.1974.23.23090
- Neil Fenichel, Asymptotic stability with rate conditions. II, Indiana Univ. Math. J. 26 (1977), no. 1, 81–93. MR 426056, DOI 10.1512/iumj.1977.26.26006
- Neil Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979), no. 1, 53–98. MR 524817, DOI 10.1016/0022-0396(79)90152-9
- Paul Glendinning and Colin Sparrow, Local and global behavior near homoclinic orbits, J. Statist. Phys. 35 (1984), no. 5-6, 645–696. MR 749842, DOI 10.1007/BF01010828
- Joseph Gruendler, The existence of homoclinic orbits and the method of Melnikov for systems in $\textbf {R}^n$, SIAM J. Math. Anal. 16 (1985), no. 5, 907–931. MR 800787, DOI 10.1137/0516069
- John Guckenheimer and Philip Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1983. MR 709768, DOI 10.1007/978-1-4612-1140-2
- J. Hadamard [1901]. Sur l’itération et les solutions asymptotiques des équationes différentielles, Bull. Soc. Math. France, 28, 224–228.
- Jack K. Hale, Integral manifolds of perturbed differential systems, Ann. of Math. (2) 73 (1961), 496–531. MR 123786, DOI 10.2307/1970314
- György Haller and Stephen Wiggins, Orbits homoclinic to resonances: the Hamiltonian case, Phys. D 66 (1993), no. 3-4, 298–346. MR 1228384, DOI 10.1016/0167-2789(93)90071-8
- G. Haller and S. Wiggins [1995]. $N$-pulse homoclinic orbits in perturbations of hyperbolic manifolds of Hamiltonian equilibria, Arch. Rat. Mech. Anal. 130, 25–101.
- M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Bull. Amer. Math. Soc. 76 (1970), 1015–1019. MR 292101, DOI 10.1090/S0002-9904-1970-12537-X
- M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR 0501173, DOI 10.1007/BFb0092042
- P. Holmes, A nonlinear oscillator with a strange attractor, Philos. Trans. Roy. Soc. London Ser. A 292 (1979), no. 1394, 419–448. MR 560797, DOI 10.1098/rsta.1979.0068
- Philip J. Holmes and Jerrold E. Marsden, Horseshoes in perturbations of Hamiltonian systems with two degrees of freedom, Comm. Math. Phys. 82 (1981/82), no. 4, 523–544. MR 641913, DOI 10.1007/BF01961239
- Philip J. Holmes and Jerrold E. Marsden, Melnikov’s method and Arnol′d diffusion for perturbations of integrable Hamiltonian systems, J. Math. Phys. 23 (1982), no. 4, 669–675. MR 649549, DOI 10.1063/1.525415
- Jiří Jarník and Jaroslav Kurzweil, On invariant sets and invariant manifolds of differential systems, J. Differential Equations 6 (1969), 247–263. MR 249729, DOI 10.1016/0022-0396(69)90016-3
- C. K. R. T. Jones and N. Kopell, Tracking invariant manifolds with differential forms in singularly perturbed systems, J. Differential Equations 108 (1994), no. 1, 64–88. MR 1268351, DOI 10.1006/jdeq.1994.1025
- C. K. R. T. Jones, T. J. Kaper, and N. Kopell [1996]. Tracking invariant manifolds up to exponentially small errors, SIAM J. Math. Anal. 27, 558–577.
- A. Katok, Some remarks of Birkhoff and Mather twist map theorems, Ergodic Theory Dynam. Systems 2 (1982), no. 2, 185–194 (1983). MR 693974, DOI 10.1017/s0143385700001504
- A. Katok and B. Hasselblatt [1995]. Introduction to the modern theory of smooth dynamical systems, Cambridge University Press.
- A. N. Kolmogorov [1954]. On conservation of conditionally periodic motion for a small change in Hamilton’s function, Dokl. Akad. Nauk. SSSR 98:4, 525–530; English transl. in his Selected Works, Vol. I: Mathematics and Mechanics, Kluwer, Dordrecht, 1991, pp. 349–354. MR 16:924c, MR 93d:01096
- Gregor Kovačič, Hamiltonian dynamics of orbits homoclinic to a resonance band, Phys. Lett. A 167 (1992), no. 2, 137–142. MR 1174677, DOI 10.1016/0375-9601(92)90218-B
- Gregor Kovačič, Dissipative dynamics of orbits homoclinic to a resonance band, Phys. Lett. A 167 (1992), no. 2, 143–150. MR 1174678, DOI 10.1016/0375-9601(92)90219-C
- G. Kovačič [1995]. Singular perturbation theory for homoclinic orbits in a class of near-integrable dissipative systems, SIAM J. Math. Anal. 26, 1611–1643.
- Gregor Kovačič, Singular perturbation theory for homoclinic orbits in a class of near-integrable Hamiltonian systems, J. Dynam. Differential Equations 5 (1993), no. 4, 559–597. MR 1250261, DOI 10.1007/BF01049139
- Gregor Kovačič and Stephen Wiggins, Orbits homoclinic to resonances, with an application to chaos in a model of the forced and damped sine-Gordon equation, Phys. D 57 (1992), no. 1-2, 185–225. MR 1169620, DOI 10.1016/0167-2789(92)90092-2
- Ivan Kupka, Stabilité des variétés invariantes d’un champ de vecteurs pour les petites perturbations, C. R. Acad. Sci. Paris 258 (1964), 4197–4200 (French). MR 162036
- Ja. Kurcveĭl′, Invariant sets of differential systems, Differencial′nye Uravnenija 4 (1968), 785–797 (Russian). MR 0232044
- Walter T. Kyner, Invariant manifolds, Rend. Circ. Mat. Palermo (2) 10 (1961), 98–110. MR 149038, DOI 10.1007/BF02844811
- P. A. Lagerstrom, Matched asymptotic expansions, Applied Mathematical Sciences, vol. 76, Springer-Verlag, New York, 1988. Ideas and techniques. MR 958913, DOI 10.1007/978-1-4757-1990-1
- L. M. Lerman and Ia. L. Umanskiĭ, On the existence of separatrix loops in four-dimensional systems similar to the integrable Hamiltonian systems, Prikl. Mat. Mekh. 47 (1983), no. 3, 395–401 (Russian); English transl., J. Appl. Math. Mech. 47 (1983), no. 3, 335–340 (1984). MR 760166, DOI 10.1016/0021-8928(83)90059-X
- Xiao-Biao Lin, Shadowing lemma and singularly perturbed boundary value problems, SIAM J. Appl. Math. 49 (1989), no. 1, 26–54. MR 978824, DOI 10.1137/0149002
- John N. Mather, Existence of quasiperiodic orbits for twist homeomorphisms of the annulus, Topology 21 (1982), no. 4, 457–467. MR 670747, DOI 10.1016/0040-9383(82)90023-4
- John N. Mather, More Denjoy minimal sets for area preserving diffeomorphisms, Comment. Math. Helv. 60 (1985), no. 4, 508–557. MR 826870, DOI 10.1007/BF02567431
- V. K. Mel′nikov, On the stability of a center for time-periodic perturbations, Trudy Moskov. Mat. Obšč. 12 (1963), 3–52 (Russian). MR 0156048
- J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1962 (1962), 1–20. MR 147741
- Jürgen Moser, A rapidly convergent iteration method and non-linear partial differential equations. I, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 20 (1966), 265–315. MR 199523
- Jürgen Moser, A rapidly convergent iteration method and non-linear differential equations. II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 20 (1966), 499–535. MR 206461
- James Murdock, Qualitative theory of nonlinear resonance by averaging and dynamical systems methods, Dynamics reported, Vol. 1, Dynam. Report. Ser. Dynam. Systems Appl., vol. 1, Wiley, Chichester, 1988, pp. 91–172. MR 945965
- J. Palis, On Morse-Smale dynamical systems, Topology 8 (1968), 385–404. MR 246316, DOI 10.1016/0040-9383(69)90024-X
- Kenneth J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differential Equations 55 (1984), no. 2, 225–256. MR 764125, DOI 10.1016/0022-0396(84)90082-2
- O. Perron [1922]. Über die Gestalt der Integralkurven einer Differentialgleichung erster Ordnung in der Umgebung eines singulären Punktes, Math. Zeit. 15, 121–146.
- H. Poincaré [1886] Mémoire sur les courbes définies par une équation differentielle IV, J. Math. Pures Appl. 4, no. 2, 151–217
- H. Poincaré [1899]. Les Méthodes Nouvelles de la Mécanique Celeste, 3 vols., Gauthier-Villars: Paris.
- Clark Robinson, Sustained resonance for a nonlinear system with slowly varying coefficients, SIAM J. Math. Anal. 14 (1983), no. 5, 847–860. MR 711167, DOI 10.1137/0514066
- Clark Robinson, Horseshoes for autonomous Hamiltonian systems using the Mel′nikov integral, Ergodic Theory Dynam. Systems 8$^*$ (1988), no. Charles Conley Memorial Issue, 395–409. MR 967646, DOI 10.1017/S0143385700009500
- Robert J. Sacker, A new approach to the perturbation theory of invariant surfaces, Comm. Pure Appl. Math. 18 (1965), 717–732. MR 188566, DOI 10.1002/cpa.3160180409
- Robert J. Sacker, A perturbation theorem for invariant manifolds and Hölder continuity, J. Math. Mech. 18 (1969), 705–762 (German). MR 0239221
- Robert J. Sacker and George R. Sell, A spectral theory for linear differential systems, J. Differential Equations 27 (1978), no. 3, 320–358. MR 501182, DOI 10.1016/0022-0396(78)90057-8
- Kunimochi Sakamoto, Invariant manifolds in singular perturbation problems for ordinary differential equations, Proc. Roy. Soc. Edinburgh Sect. A 116 (1990), no. 1-2, 45–78. MR 1076353, DOI 10.1017/S0308210500031371
- Jorge Sotomayor, Structural stability of first order and Banach varieties, Univ. Nac. Ingen. Inst. Mat. Puras Apl. Notas Mat. 4 (1966), 11–52 (Portuguese). MR 253379
- S. K. Tin [1994]. Ph.D. thesis, Brown University.
- S. K. Tin [1994]. On the dynamics of tangent spaces near a normally hyperbolic invariant manifold, preprint.
- S. K. Tin, N. Kopell, and C. K. R. T. Jones [1994]. Invariant manifolds and singularly perturbed boundary value problems, SIAM J. Numer. Anal. 31, 1558–1576.
- Stephen Wiggins, Global bifurcations and chaos, Applied Mathematical Sciences, vol. 73, Springer-Verlag, New York, 1988. Analytical methods. MR 956468, DOI 10.1007/978-1-4612-1042-9
Bibliographic Information
- Tasso J. Kaper
- Affiliation: Department of Mathematics, Boston University, Boston, Massachusetts 02215
- Email: tasso@math.bu.edu
- Gregor Kovacic
- Affiliation: Mathematical Sciences Department, Rensselaer Polytechnic Institute, Troy, New York 12180
- Email: kovacg@rpi.edu
- Received by editor(s): June 1, 1994
- Received by editor(s) in revised form: March 27, 1995
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 3835-3887
- MSC (1991): Primary 34A26, 34A47, 34C35, 34C37, 34D15
- DOI: https://doi.org/10.1090/S0002-9947-96-01527-9
- MathSciNet review: 1329536