Algebraic surfaces with log canonical singularities and the fundamental groups of their smooth parts
HTML articles powered by AMS MathViewer
- by D.-Q. Zhang
- Trans. Amer. Math. Soc. 348 (1996), 4175-4184
- DOI: https://doi.org/10.1090/S0002-9947-96-01595-4
- PDF | Request permission
Abstract:
Let $(S, \Delta )$ be a log surface with at worst log canonical singularities and reduced boundary $\Delta$ such that $-(K_{S}+\Delta )$ is nef and big. We shall prove that $S^{o} = S - Sing S - \Delta$ either has finite fundamental group or is affine-ruled. Moreover, $\pi _{1}(S^{o})$ and the structure of $S$ are determined in some sense when $\Delta = 0$.References
- T. C. Chau, A note concerning Fox’s paper on Fenchel’s conjecture, Proc. Amer. Math. Soc. 88 (1983), no. 4, 584–586. MR 702279, DOI 10.1090/S0002-9939-1983-0702279-5
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Yujiro Kawamata, Elementary contractions of algebraic $3$-folds, Ann. of Math. (2) 119 (1984), no. 1, 95–110. MR 736561, DOI 10.2307/2006964
- Yujiro Kawamata, Crepant blowing-up of $3$-dimensional canonical singularities and its application to degenerations of surfaces, Ann. of Math. (2) 127 (1988), no. 1, 93–163. MR 924674, DOI 10.2307/1971417
- Yujiro Kawamata, Katsumi Matsuda, and Kenji Matsuki, Introduction to the minimal model problem, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 283–360. MR 946243, DOI 10.2969/aspm/01010283
- Flips and abundance for algebraic threefolds, Société Mathématique de France, Paris, 1992. Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991; Astérisque No. 211 (1992). MR 1225842
- Masayoshi Miyanishi, Noncomplete algebraic surfaces, Lecture Notes in Mathematics, vol. 857, Springer-Verlag, Berlin-New York, 1981. MR 635930, DOI 10.1007/BFb0090459
- Masayoshi Miyanishi and Shuichiro Tsunoda, Noncomplete algebraic surfaces with logarithmic Kodaira dimension $-\infty$ and with nonconnected boundaries at infinity, Japan. J. Math. (N.S.) 10 (1984), no. 2, 195–242. MR 884420, DOI 10.4099/math1924.10.195
- Masayoshi Miyanishi and Shuichiro Tsunoda, Logarithmic del Pezzo surfaces of rank one with noncontractible boundaries, Japan. J. Math. (N.S.) 10 (1984), no. 2, 271–319. MR 884422, DOI 10.4099/math1924.10.271
- Hershel M. Farkas, On Fay’s tri-secant formula, J. Analyse Math. 44 (1984/85), 205–217. MR 801294, DOI 10.1007/BF02790197
- L. Kantorovitch, The method of successive approximations for functional equations, Acta Math. 71 (1939), 63–97. MR 95, DOI 10.1007/BF02547750
- D.-Q. Zhang, Normal algebraic surfaces of anti-Kodaira dimension one or two, Intern. J. Math. 6 (1995), 329–336.
- Akira Fujiki, Ryoichi Kobayashi, and Steven Lu, On the fundamental group of certain open normal surfaces, Saitama Math. J. 11 (1993), 15–20. MR 1259272
- Lucian Bădescu, Anticanonical models of ruled surfaces, Ann. Univ. Ferrara Sez. VII (N.S.) 29 (1983), 165–177 (1984) (English, with Italian summary). MR 763219
- R. V. Gurjar and D.-Q. Zhang, $\pi _1$ of smooth points of a log del Pezzo surface is finite. I, J. Math. Sci. Univ. Tokyo 1 (1994), no. 1, 137–180. MR 1298542
- Yujiro Kawamata, On the classification of noncomplete algebraic surfaces, Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978) Lecture Notes in Math., vol. 732, Springer, Berlin, 1979, pp. 215–232. MR 555700
- Fumio Sakai, Anticanonical models of rational surfaces, Math. Ann. 269 (1984), no. 3, 389–410. MR 761313, DOI 10.1007/BF01450701
- D.-Q. Zhang, The fundamental group of the smooth part of a log Fano variety, Osaka J. Math. 32 (1995), 637–644.
Bibliographic Information
- D.-Q. Zhang
- Affiliation: Department of Mathematics, National University of Singapore, Singapore
- MR Author ID: 187025
- ORCID: 0000-0003-0139-645X
- Email: matzdq@nus.sg
- Received by editor(s): February 25, 1995
- Received by editor(s) in revised form: June 9, 1995
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 4175-4184
- MSC (1991): Primary 14J45; Secondary 14E20, 14J26, 14J17
- DOI: https://doi.org/10.1090/S0002-9947-96-01595-4
- MathSciNet review: 1348158