Transfinite multifractal dimension spectrums
HTML articles powered by AMS MathViewer
- by Stanley C. Williams
- Trans. Amer. Math. Soc. 348 (1996), 4043-4081
- DOI: https://doi.org/10.1090/S0002-9947-96-01622-4
- PDF | Request permission
Abstract:
The first order theory of the decomposition of measures with respect to dimension which has been developed by Kahane, Katznelson, Cutler, and others is extended through transfinite recursion to a $\omega _1$-order theory. Necessary and sufficient conditions for a finite regular Borel measure on $[0,d]^{\omega _1}$ to be a $\omega _1$-order multispectrum for a finite Borel measure on $\mathbb {R}^d$ is given.References
- Paul Bernays, Axiomatic set theory, Dover Publications, Inc., New York, 1991. With a historical introduction by Abraham A. Fraenkel; Reprint of the 1968 edition. MR 1105323
- Donald L. Cohn, Measure theory, Birkhäuser, Boston, Mass., 1980. MR 578344, DOI 10.1007/978-1-4899-0399-0
- John B. Conway, A course in functional analysis, 2nd ed., Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1990. MR 1070713
- Colleen D. Cutler, The Hausdorff dimension distribution of finite measures in Euclidean space, Canad. J. Math. 38 (1986), no. 6, 1459–1484. MR 873419, DOI 10.4153/CJM-1986-071-9
- J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984. MR 731258, DOI 10.1007/978-1-4612-5208-5
- Richard Holley and Edward C. Waymire, Multifractal dimensions and scaling exponents for strongly bounded random cascades, Ann. Appl. Probab. 2 (1992), no. 4, 819–845. MR 1189419
- Jean-Pierre Kahane, Some random series of functions, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 5, Cambridge University Press, Cambridge, 1985. MR 833073
- Jean-Pierre Kahane, Multiplications aléatoires et dimensions de Hausdorff, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), no. 2, suppl., 289–296 (French, with English summary). MR 898497
- Jean-Pierre Kahane, Positive martingales and random measures, Chinese Ann. Math. Ser. B 8 (1987), no. 1, 1–12. A Chinese summary appears in Chinese Ann. Math. Ser. A 8 (1987), no. 1, 136. MR 886744
- Jean-Pierre Kahane and Yitzhak Katznelson, Décomposition des mesures selon la dimension, Colloq. Math. 58 (1990), no. 2, 269–279 (French). MR 1060178, DOI 10.4064/cm-58-2-269-279
- J.-P. Kahane and J. Peyrière, Sur certaines martingales de Benoit Mandelbrot, Advances in Math. 22 (1976), no. 2, 131–145. MR 431355, DOI 10.1016/0001-8708(76)90151-1
- R. Daniel Mauldin, A representation theorem for the second dual of $C[0,\,1]$, Studia Math. 46 (1973), 197–200. MR 346506, DOI 10.4064/sm-46-3-197-200
- G. Brown, G. Michon, and J. Peyrière, On the multifractal analysis of measures, J. Statist. Phys. 66 (1992), no. 3-4, 775–790. MR 1151978, DOI 10.1007/BF01055700
- L. Olsen. Multifractal formalism. Adv. in Math. 116:82–196 (1995), .
- K. R. Parthasarathy, Introduction to probability and measure, Macmillan Co. of India, Ltd., Delhi, 1977. MR 0651012, DOI 10.1007/978-1-349-03365-2
- C. A. Rogers, Hausdorff measures, Cambridge University Press, London-New York, 1970. MR 0281862
- Claude Tricot Jr., Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982), no. 1, 57–74. MR 633256, DOI 10.1017/S0305004100059119
- E.C. Waymire and S.C. Williams. Multiplicative cascades: Dimension spectra and dependence. Journal of Fourier Analysis and its Applications. 1995, Special issue, 589–609. .
- E.C. Waymire and S.C.Williams. Markov cascades. IMA Volume on Braveling Processes, ed. by K. Athroya and P. Jagers (in press).
- Edward C. Waymire and Stanley C. Williams, A general decomposition theory for random cascades, Bull. Amer. Math. Soc. (N.S.) 31 (1994), no. 2, 216–222. MR 1260522, DOI 10.1090/S0273-0979-1994-00521-X
- E.C. Waymire and S.C. Williams. A cascade decomposition theory with applications to Markov and exchangeable cascades. Transactions of the American Mathematical Society. 348:585–632 (1996).
Bibliographic Information
- Stanley C. Williams
- Affiliation: Department of Mathematics and Statistics, Utah State University, Logan, Utah 84322-3900
- Email: williams@sunfs.math.usu.edu
- Received by editor(s): January 29, 1995
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 4043-4081
- MSC (1991): Primary 28A78, 28A80, 60G42; Secondary 60G57
- DOI: https://doi.org/10.1090/S0002-9947-96-01622-4
- MathSciNet review: 1351496