A new uncountably categorical group
HTML articles powered by AMS MathViewer
- by Andreas Baudisch
- Trans. Amer. Math. Soc. 348 (1996), 3889-3940
- DOI: https://doi.org/10.1090/S0002-9947-96-01623-6
- PDF | Request permission
Abstract:
We construct an uncountably categorical group with a geometry that is not locally modular. It is not possible to interpret a field in this group. We show the group is CM-trivial.References
- J. T. Baldwin and A. H. Lachlan, On strongly minimal sets, J. Symbolic Logic 36 (1971), 79–96. MR 286642, DOI 10.2307/2271517
- Andreas Baudisch, Decidability and stability of free nilpotent Lie algebras and free nilpotent $p$-groups of finite exponent, Ann. Math. Logic 23 (1982), no. 1, 1–25. MR 674671, DOI 10.1016/0003-4843(82)90008-0
- Andreas Baudisch, On Lascar rank in nonmultidimensional $\omega$-stable theories, Logic colloquium ’85 (Orsay, 1985) Stud. Logic Found. Math., vol. 122, North-Holland, Amsterdam, 1987, pp. 33–51. MR 895637, DOI 10.1016/S0049-237X(09)70546-4
- Andreas Baudisch, Classification and interpretation, J. Symbolic Logic 54 (1989), no. 1, 138–159. MR 987328, DOI 10.2307/2275021
- Andreas Baudisch, On superstable groups, J. London Math. Soc. (2) 42 (1990), no. 3, 452–464. MR 1087220, DOI 10.1112/jlms/s2-42.3.452
- A. Baudisch, A new uncountably categorical pure group, Preprint Nr. A 93-40 Freie Universität Berlin 1993.
- O. V. Belegradek, On groups of finite Morley rank, Abstracts of the $8^{th}$ International Congress of Logic, Methodology, and Philosophy of Science, Moscow, 1987, 100.
- Ch. Berline and D. Lascar, Superstable groups, Ann. Pure Appl. Logic 30 (1986), no. 1, 1–43. Stability in model theory (Trento, 1984). MR 831435, DOI 10.1016/0168-0072(86)90035-7
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- J. B. Goode, Hrushovski’s geometries, Proceedings of the $7^{th}$ Easter Conference on Model Theory 1989, Seminarberichte der Humboldt-Universität zu Berlin Nr. 104, 106-117.
- Claus Grünenwald and Frieder Haug, On stable torsion-free nilpotent groups, Arch. Math. Logic 32 (1993), no. 6, 451–462. MR 1245526, DOI 10.1007/BF01270468
- Ehud Hrushovski, A new strongly minimal set, Ann. Pure Appl. Logic 62 (1993), no. 2, 147–166. Stability in model theory, III (Trento, 1991). MR 1226304, DOI 10.1016/0168-0072(93)90171-9
- U. Hrushovski and A. Pillay, Weakly normal groups, Logic colloquium ’85 (Orsay, 1985) Stud. Logic Found. Math., vol. 122, North-Holland, Amsterdam, 1987, pp. 233–244. MR 895647, DOI 10.1016/S0049-237X(09)70556-7
- Serge Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR 0197234
- Michael Morley, Categoricity in power, Trans. Amer. Math. Soc. 114 (1965), 514–538. MR 175782, DOI 10.1090/S0002-9947-1965-0175782-0
- Ali Nesin, Poly-separated and $\omega$-stable nilpotent groups, J. Symbolic Logic 56 (1991), no. 2, 694–699. MR 1133096, DOI 10.2307/2274711
- Bruno Poizat, Cours de théorie des modèles, Bruno Poizat, Lyon, 1985 (French). Une introduction à la logique mathématique contemporaine. [An introduction to contemporary mathematical logic]. MR 817208
- Bruno Poizat, Groupes stables, Nur al-Mantiq wal-Maʾrifah [Light of Logic and Knowledge], vol. 2, Bruno Poizat, Lyon, 1987 (French). Une tentative de conciliation entre la géométrie algébrique et la logique mathématique. [An attempt at reconciling algebraic geometry and mathematical logic]. MR 902156
- Bruno Poizat, Une théorie de Galois imaginaire, J. Symbolic Logic 48 (1983), no. 4, 1151–1170 (1984) (French). MR 727805, DOI 10.2307/2273680
- Anand Pillay, Some remarks on modular regular types, J. Symbolic Logic 56 (1991), no. 3, 1003–1011. MR 1129162, DOI 10.2307/2275067
- A. Pillay The geometry of forking and groups of finite Morley rank, preprint 1994.
- S. Shelah, Classification theory and the number of nonisomorphic models, 2nd ed., Studies in Logic and the Foundations of Mathematics, vol. 92, North-Holland Publishing Co., Amsterdam, 1990. MR 1083551
- B. I. Zil′ber, Groups and rings whose theory is categorical, Fund. Math. 95 (1977), no. 3, 173–188 (Russian, with English summary). MR 441720
- B. I. Zil′ber, Some model theory of simple algebraic groups over algebraically closed fields, Colloq. Math. 48 (1984), no. 2, 173–180. MR 758524, DOI 10.4064/cm-48-2-173-180
- Gregory L. Cherlin, Totally categorical structures, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 301–306. MR 804687
- B. Zil′ber, Uncountably categorical nilpotent groups and Lie algebras, Soviet Math. (Iz. VUZ) 26 (1982), 98 -99.
Bibliographic Information
- Andreas Baudisch
- Affiliation: 2. Mathematisches Institut, Freie Universität Berlin, Arnimallee 3, 14195 Berlin
- Address at time of publication: Fachbereich Mathematik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
- Email: baudisch@mathematik.hu-berlin.de
- Received by editor(s): October 26, 1993
- Received by editor(s) in revised form: March 10, 1995
- Additional Notes: Heisenberg-Stipendiat der Deutschen Forschungsgemeinschaft
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 3889-3940
- MSC (1991): Primary 03C35, 03C45, 03C60
- DOI: https://doi.org/10.1090/S0002-9947-96-01623-6
- MathSciNet review: 1351488