Wiener’s test for space-time random walks and its applications
HTML articles powered by AMS MathViewer
- by Yasunari Fukai and Kôhei Uchiyama
- Trans. Amer. Math. Soc. 348 (1996), 4131-4152
- DOI: https://doi.org/10.1090/S0002-9947-96-01643-1
- PDF | Request permission
Abstract:
This paper establishes a criterion for whether a $d$-dimensional random walk on the integer lattice $\mathbf {Z}^{d}$ visits a space-time subset infinitely often or not. It is a precise analogue of Wiener’s test for regularity of a boundary point with respect to the classical Dirichlet problem. The test obtained is applied to strengthen the harder half of Kolmogorov’s test for the random walk.References
- J. J. Corliss, Upper limits to the real roots of a real algebraic equation, Amer. Math. Monthly 46 (1939), 334–338. MR 4, DOI 10.1080/00029890.1939.11998880
- Lawrence C. Evans and Ronald F. Gariepy, Wiener’s criterion for the heat equation, Arch. Rational Mech. Anal. 78 (1982), no. 4, 293–314. MR 653544, DOI 10.1007/BF00249583
- Albert Eagle, Series for all the roots of a trinomial equation, Amer. Math. Monthly 46 (1939), 422–425. MR 5, DOI 10.2307/2303036
- A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195–206. MR 8, DOI 10.1017/S0370164600012281
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Nicola Garofalo and Ermanno Lanconelli, Wiener’s criterion for parabolic equations with variable coefficients and its consequences, Trans. Amer. Math. Soc. 308 (1988), no. 2, 811–836. MR 951629, DOI 10.1090/S0002-9947-1988-0951629-2
- Kiyosi Itô and H. P. McKean Jr., Potentials and the random walk, Illinois J. Math. 4 (1960), 119–132. MR 121581
- E. M. Landis, Necessary and sufficient conditions for the regularity of a boundary point for the Dirichlet problem for the heat equation, Dokl. Akad. Nauk SSSR 185 (1969), 517–520 (Russian). MR 0262703
- John Lamperti, Wiener’s test and Markov chains, J. Math. Anal. Appl. 6 (1963), 58–66. MR 143258, DOI 10.1016/0022-247X(63)90092-1
- Lévy, P., Théorie de l’addition des variables aléatoires, Paris: Gautier-Villars (1937).
- Minoru Motoo, Proof of the law of iterated logarithm through diffusion equation, Ann. Inst. Statist. Math. 10 (1958), 21–28. MR 97866, DOI 10.1007/BF02883984
- Petrovskii, I., Zur ersten Randwertaufgabe der Wärmeleitungsgleichung, Compos. Math. 1 (1935), 383-419.
- Frank Spitzer, Principles of random walk, 2nd ed., Graduate Texts in Mathematics, Vol. 34, Springer-Verlag, New York-Heidelberg, 1976. MR 0388547, DOI 10.1007/978-1-4684-6257-9
- K\B{o}hei Uchiyama, A probabilistic proof and applications of Wiener’s test for the heat operator, Math. Ann. 283 (1989), no. 1, 65–86. MR 973804, DOI 10.1007/BF01457502
Bibliographic Information
- Yasunari Fukai
- Affiliation: Department of Applied Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, Japan
- Email: uchiyama@neptune.ap.titech.ac.jp
- Kôhei Uchiyama
- Affiliation: Department of Applied Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, Japan
- Received by editor(s): May 10, 1995
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 4131-4152
- MSC (1991): Primary 60J15, 60J45, 31C20
- DOI: https://doi.org/10.1090/S0002-9947-96-01643-1
- MathSciNet review: 1357394