Invariants of piecewise-linear 3-manifolds
HTML articles powered by AMS MathViewer
- by John W. Barrett and Bruce W. Westbury
- Trans. Amer. Math. Soc. 348 (1996), 3997-4022
- DOI: https://doi.org/10.1090/S0002-9947-96-01660-1
- PDF | Request permission
Abstract:
This paper presents an algebraic framework for constructing invariants of closed oriented 3-manifolds by taking a state sum model on a triangulation. This algebraic framework consists of a tensor category with a condition on the duals which we have called a spherical category. A significant feature is that the tensor category is not required to be braided. The main examples are constructed from the categories of representations of involutive Hopf algebras and of quantised enveloping algebras at a root of unity.References
- Henning Haahr Andersen, Tensor products of quantized tilting modules, Comm. Math. Phys. 149 (1992), no.Β 1, 149β159. MR 1182414, DOI 10.1007/BF02096627
- Henning Haahr Andersen and Jan Paradowski, Fusion categories arising from semisimple Lie algebras, Comm. Math. Phys. 169 (1995), no.Β 3, 563β588. MR 1328736, DOI 10.1007/BF02099312
- J. W. Barrett and B. W. Westbury, Spherical categories, preprint, hep-th/9310164, University of Nottingham, 1993.
- J. W. Barrett and B. W. Westbury, The equality of 3-manifold invariants, Math. Proc. Cambridge Philos. Soc. 118 (1995), 503β510.
- Bergfinnur Durhuus, Hans Plesner Jakobsen, and Ryszard Nest, Topological quantum field theories from generalized $6j$-symbols, Rev. Math. Phys. 5 (1993), no.Β 1, 1β67. MR 1219529, DOI 10.1142/S0129055X93000024
- Peter J. Freyd and David N. Yetter, Braided compact closed categories with applications to low-dimensional topology, Adv. Math. 77 (1989), no.Β 2, 156β182. MR 1020583, DOI 10.1016/0001-8708(89)90018-2
- Peter Freyd and David N. Yetter, Coherence theorems via knot theory, J. Pure Appl. Algebra 78 (1992), no.Β 1, 49β76. MR 1154897, DOI 10.1016/0022-4049(92)90018-B
- L. C. Glaser, Geometrical Combinatorial Topology I, Van Nostrand Reinhold Mathematical Studies 27 (1970).
- AndrΓ© Joyal and Ross Street, The geometry of tensor calculus. I, Adv. Math. 88 (1991), no.Β 1, 55β112. MR 1113284, DOI 10.1016/0001-8708(91)90003-P
- G. M. Kelly and M. L. Laplaza, Coherence for compact closed categories, J. Pure Appl. Algebra 19 (1980), 193β213. MR 593254, DOI 10.1016/0022-4049(80)90101-2
- Greg Kuperberg, Involutory Hopf algebras and $3$-manifold invariants, Internat. J. Math. 2 (1991), no.Β 1, 41β66. MR 1082836, DOI 10.1142/S0129167X91000053
- Richard G. Larson and David E. Radford, Finite-dimensional cosemisimple Hopf algebras in characteristic $0$ are semisimple, J. Algebra 117 (1988), no.Β 2, 267β289. MR 957441, DOI 10.1016/0021-8693(88)90107-X
- Richard Gustavus Larson and Moss Eisenberg Sweedler, An associative orthogonal bilinear form for Hopf algebras, Amer. J. Math. 91 (1969), 75β94. MR 240169, DOI 10.2307/2373270
- J. P. Moussouris, Quantum models of space-time based on coupling theory, D. Phil. Oxford (1983).
- Udo Pachner, P.L. homeomorphic manifolds are equivalent by elementary shellings, European J. Combin. 12 (1991), no.Β 2, 129β145. MR 1095161, DOI 10.1016/S0195-6698(13)80080-7
- G. Ponzano and T. Regge, Semiclassical limit of Racah coefficients, in Spectroscopic and Group Theoretical Methods in Physics, North-Holland, Amsterdam, 1968, pp. 1β58.
- N. Reshetikhin and V. G. Turaev, Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no.Β 3, 547β597. MR 1091619, DOI 10.1007/BF01239527
- A. N. Kirillov and N. Yu. Reshetikhin, Representations of the algebra ${U}_q(\textrm {sl}(2)),\;q$-orthogonal polynomials and invariants of links, Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988) Adv. Ser. Math. Phys., vol. 7, World Sci. Publ., Teaneck, NJ, 1989, pp.Β 285β339. MR 1026957
- N. Yu. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), no.Β 1, 1β26. MR 1036112, DOI 10.1007/BF02096491
- J. Roberts, Skein theory and Turaev-Viro invariants, Topology 34 (1995), 771β787.
- Colin Patrick Rourke and Brian Joseph Sanderson, Introduction to piecewise-linear topology, Springer Study Edition, Springer-Verlag, Berlin-New York, 1982. Reprint. MR 665919
- Vladimir Turaev, Quantum invariants of $3$-manifold and a glimpse of shadow topology, Quantum groups (Leningrad, 1990) Lecture Notes in Math., vol. 1510, Springer, Berlin, 1992, pp.Β 363β366. MR 1183502, DOI 10.1007/BFb0101203
- Vladimir G. Turaev, Modular categories and $3$-manifold invariants, Internat. J. Modern Phys. B 6 (1992), no.Β 11-12, 1807β1824. Topological and quantum group methods in field theory and condensed matter physics. MR 1186845, DOI 10.1142/S0217979292000876
- V. G. Turaev, Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, vol. 18, Walter de Gruyter & Co., Berlin, 1994. MR 1292673, DOI 10.1515/9783110883275
- V. G. Turaev and O. Ya. Viro, State sum invariants of $3$-manifolds and quantum $6j$-symbols, Topology 31 (1992), no.Β 4, 865β902. MR 1191386, DOI 10.1016/0040-9383(92)90015-A
- V. Turaev and H. Wenzl, Quantum invariants of $3$-manifolds associated with classical simple Lie algebras, Internat. J. Math. 4 (1993), no.Β 2, 323β358. MR 1217386, DOI 10.1142/S0129167X93000170
- K. Walker, On Wittenβs 3-manifold invariants, 1990.
- David N. Yetter, State-sum invariants of $3$-manifolds associated to Artinian semisimple tortile categories, Topology Appl. 58 (1994), no.Β 1, 47β80. MR 1280710, DOI 10.1016/0166-8641(94)90073-6
Bibliographic Information
- John W. Barrett
- Affiliation: Department of Mathematics, University of Nottingham, University Park, Nottingham, NG7 2RD, U.K.
- MR Author ID: 31635
- Email: jwb@maths.nott.ac.uk
- Bruce W. Westbury
- Affiliation: Department of Mathematics, University of Nottingham, University Park, Nottingham, NG7 2RD, U.K.
- Email: bww@maths.nott.ac.uk
- Received by editor(s): July 20, 1994
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 3997-4022
- MSC (1991): Primary 57N10
- DOI: https://doi.org/10.1090/S0002-9947-96-01660-1
- MathSciNet review: 1357878