Sharp upper bound for the first non-zero Neumann eigenvalue for bounded domains in rank-1 symmetric spaces
HTML articles powered by AMS MathViewer
- by A. R. Aithal and G. Santhanam
- Trans. Amer. Math. Soc. 348 (1996), 3955-3965
- DOI: https://doi.org/10.1090/S0002-9947-96-01682-0
- PDF | Request permission
Abstract:
In this paper, we prove that for a bounded domain $\Omega$ in a rank-$1$ symmetric space, the first non-zero Neumann eigenvalue $\mu _{1}(\Omega )\leq \mu _{1}(B(r_{1}))$ where $B(r_{1})$ denotes the geodesic ball of radius $r_{1}$ such that \begin{equation*}vol(\Omega )=vol(B(r_{1}))\end{equation*} and equality holds iff $\Omega =B(r_{1})$. This result generalises the works of Szego, Weinberger and Ashbaugh-Benguria for bounded domains in the spaces of constant curvature.References
- M.S. Ashbaugh and R.D. Benguria, Sharp upper bound to the first non-zero eigenvalue for bounded domains in spaces of constant curvature, preprint.
- M. Berger, Lectures on geodesics in Riemannian geometry, Tata Institute of Fundamental Research Lectures on Mathematics, No. 33, Tata Institute of Fundamental Research, Bombay, 1965. MR 0215258
- Lionel Bérard-Bergery and Jean-Pierre Bourguignon, Laplacians and Riemannian submersions with totally geodesic fibres, Illinois J. Math. 26 (1982), no. 2, 181–200. MR 650387
- Garrett Birkhoff and Gian-Carlo Rota, Ordinary differential equations, 3rd ed., John Wiley & Sons, New York-Chichester-Brisbane, 1978. MR 507190
- S. Gallot, D. Hulin, and J. Lafontaine, Riemannian geometry, Universitext, Springer-Verlag, Berlin, 1987. MR 909697, DOI 10.1007/978-3-642-97026-9
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
Bibliographic Information
- A. R. Aithal
- Affiliation: Department of Mathematics, University of Bombay, Vidyanagare, Bombay-400098, India
- Email: aithal@mathbu.ernet.in
- G. Santhanam
- Affiliation: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay-400-005, India
- Email: santhana@math.tifr.res.in
- Received by editor(s): January 20, 1994
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 3955-3965
- MSC (1991): Primary 35P15, 58G25
- DOI: https://doi.org/10.1090/S0002-9947-96-01682-0
- MathSciNet review: 1363942