On polarized surfaces $(X,L)$ with $h^0(L)>0$, $\kappa (X)=2$, and $g(L)=q(X)$
HTML articles powered by AMS MathViewer
- by Yoshiaki Fukuma
- Trans. Amer. Math. Soc. 348 (1996), 4185-4197
- DOI: https://doi.org/10.1090/S0002-9947-96-01705-9
- PDF | Request permission
Abstract:
Let $X$ be a smooth projective surface over $\mathbb {C}$ and $L$ an ample Cartier divisor on $X$. If the Kodaira dimension $\kappa (X)\leq 1$ or $\operatorname {dim}H^{0}(L)>0$, the author proved $g(L)\geq q(X)$, where $q(X)=\operatorname {dim}H^{1}(\mathcal {O}_{X})$. If $\kappa (X)\leq 1$, then the author studied $(X,L)$ with $g(L)=q(X)$. In this paper, we study the polarized surface $(X,L)$ with $\kappa (X)=2$, $g(L)=q(X)$, and $\operatorname {dim}H^{0}(L)>0$.References
- A. Beauville, L’inegalite $p_{g}\geq 2q-4$ pour les surfaces de type général, Bull. Soc. Math. France 110 (1982), 343–346.
- E. Bombieri, Canonical models of surfaces of general type, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 171–219. MR 318163, DOI 10.1007/BF02685880
- F. Catanese, On the moduli spaces of surfaces of general type, J. Differential Geom. 19 (1984), no. 2, 483–515. MR 755236, DOI 10.4310/jdg/1214438689
- J.-P.Demailly, Effective bounds for very ample line bundles, Invent Math. 124 (1996), 243–261.
- Takao Fujita, Classification theories of polarized varieties, London Mathematical Society Lecture Note Series, vol. 155, Cambridge University Press, Cambridge, 1990. MR 1162108, DOI 10.1017/CBO9780511662638
- Takao Fujita, On the structure of polarized varieties with $\Delta$-genera zero, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975), 103–115. MR 369363
- Y. Fukuma, A lower bound for the sectional genus of quasi-polarized surfaces, to appear in Geometriae Dedicata.
- —, A lower bound for sectional genus of quasi-polarized manifolds, to appear in J. Math. Soc. Japan.
- Antonio Lanteri, Algebraic surfaces containing a smooth curve of genus $q(S)$ as an ample divisor, Geom. Dedicata 17 (1984), no. 2, 189–197. MR 771196, DOI 10.1007/BF00151507
- R. Lazarsfeld, Lectures on Linear Series, preprint.
- Shigefumi Mori, Classification of higher-dimensional varieties, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 269–331. MR 927961, DOI 10.1090/pspum/046.1/927961
- C. P. Ramanujam, Remarks on the Kodaira vanishing theorem, J. Indian Math. Soc. (N.S.) 36 (1972), 41–51. MR 330164
- Igor Reider, Vector bundles of rank $2$ and linear systems on algebraic surfaces, Ann. of Math. (2) 127 (1988), no. 2, 309–316. MR 932299, DOI 10.2307/2007055
- Fumio Sakai, Weil divisors on normal surfaces, Duke Math. J. 51 (1984), no. 4, 877–887. MR 771385, DOI 10.1215/S0012-7094-84-05138-X
- Andrew John Sommese, On the adjunction theoretic structure of projective varieties, Complex analysis and algebraic geometry (Göttingen, 1985) Lecture Notes in Math., vol. 1194, Springer, Berlin, 1986, pp. 175–213. MR 855885, DOI 10.1007/BFb0077004
- Andrew John Sommese and A. Van de Ven, On the adjunction mapping, Math. Ann. 278 (1987), no. 1-4, 593–603. MR 909240, DOI 10.1007/BF01458083
Bibliographic Information
- Yoshiaki Fukuma
- Affiliation: Department of Mathematics, Faculty of Science, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152, Japan
- Email: fukuma@math.titech.ac.jp
- Received by editor(s): June 9, 1995
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 4185-4197
- MSC (1991): Primary 14C20; Secondary 14J29
- DOI: https://doi.org/10.1090/S0002-9947-96-01705-9
- MathSciNet review: 1370640