The Lyapunov spectrum of families of time-varying matrices
HTML articles powered by AMS MathViewer
- by Fritz Colonius and Wolfgang Kliemann
- Trans. Amer. Math. Soc. 348 (1996), 4389-4408
- DOI: https://doi.org/10.1090/S0002-9947-96-01523-1
- PDF | Request permission
Abstract:
For $L^{\infty }$-families of time varying matrices centered at an unperturbed matrix, the Lyapunov spectrum contains the Floquet spectrum obtained by considering periodically varying piecewise constant matrices. On the other hand, it is contained in the Morse spectrum of an associated flow on a vector bundle. A closer analysis of the Floquet spectrum based on geometric control theory in projective space and, in particular, on control sets, is performed. Introducing a real parameter $\rho \ge 0$, which indicates the size of the $L^{\infty }$-perturbation, we study when the Floquet spectrum, the Morse spectrum, and hence the Lyapunov spectrum all coincide. This holds, if an inner pair condition is satisfied, for all up to at most countably many $\rho$-values.References
- L. Arnold and W. Kliemann, Large deviations of linear stochastic differential equations, Stochastic Differential Systems, J. H. Engelbrecht and W. Schmidt (eds.) Spinger-Verlag (1987), 117–151.
- L. Arnold, W. Kliemann, and E. Oeljeklaus, Lyapunov exponents of linear stochastic systems, Lyapunov exponents (Bremen, 1984) Lecture Notes in Math., vol. 1186, Springer, Berlin, 1986, pp. 85–125. MR 850072, DOI 10.1007/BFb0076835
- C.J.B. Barros and L.A.B. San Martin, On the number of control sets on projective spaces, Instituto de Matematica, RP 67/94, Universidade Estadual de Campinas, Campinas (Brasil).
- B. F. Bylov, R. È. Vinograd, D. M. Grobman, and V. V. Nemyckiĭ, Teoriya pokazateleĭ Lyapunova i ee prilozheniya k voprosam ustoĭchivosti, Izdat. “Nauka”, Moscow, 1966 (Russian). MR 0206415
- Lamberto Cesari, Asymptotic behavior and stability problems in ordinary differential equations, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 16, Springer-Verlag, New York-Heidelberg, 1971. MR 0350089, DOI 10.1007/978-3-642-85671-6
- Fritz Colonius and Wolfgang Kliemann, Infinite time optimal control and periodicity, Appl. Math. Optim. 20 (1989), no. 2, 113–130. MR 998400, DOI 10.1007/BF01447651
- Fritz Colonius and Wolfgang Kliemann, Stability radii and Lyapunov exponents, Control of uncertain systems (Bremen, 1989) Progr. Systems Control Theory, vol. 6, Birkhäuser Boston, Boston, MA, 1990, pp. 19–55. MR 1206680
- Fritz Colonius and Wolfgang Kliemann, Remarks on ergodic theory of stochastic flows and control flows, Diffusion processes and related problems in analysis, Vol. II (Charlotte, NC, 1990) Progr. Probab., vol. 27, Birkhäuser Boston, Boston, MA, 1992, pp. 203–239. MR 1187992
- W. J. Trjitzinsky, General theory of singular integral equations with real kernels, Trans. Amer. Math. Soc. 46 (1939), 202–279. MR 92, DOI 10.1090/S0002-9947-1939-0000092-6
- Fritz Colonius and Wolfgang Kliemann, Minimal and maximal Lyapunov exponents of bilinear control systems, J. Differential Equations 101 (1993), no. 2, 232–275. MR 1204328, DOI 10.1006/jdeq.1993.1012
- Fritz Colonius and Wolfgang Kliemann, Some aspects of control systems as dynamical systems, J. Dynam. Differential Equations 5 (1993), no. 3, 469–494. MR 1235039, DOI 10.1007/BF01053532
- Fritz Colonius and Wolfgang Kliemann, Linear control semigroups acting on projective space, J. Dynam. Differential Equations 5 (1993), no. 3, 495–528. MR 1235040, DOI 10.1007/BF01053533
- Hidegorô Nakano, Über Abelsche Ringe von Projektionsoperatoren, Proc. Phys.-Math. Soc. Japan (3) 21 (1939), 357–375 (German). MR 94
- F. Colonius and W. Kliemann, Asymptotic null-controllability of bilinear systems, Geometry in Nonlinear Control and Differential Inclusions (Warsaw, 1993), Banach Center Publ., 32, Polish Acad. Sci., Warsaw. 1995, 139–148.
- F. Colonius and W. Kliemann, The Morse spectrum of linear flows on vector bundles, Trans. Amer. Math. Soc. 348 (1996), 4355-4388.
- Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR 511133, DOI 10.1090/cbms/038
- Ju. L. Dalec′kiĭ and M. G. Kreĭn, Stability of solutions of differential equations in Banach space, Translations of Mathematical Monographs, Vol. 43, American Mathematical Society, Providence, R.I., 1974. Translated from the Russian by S. Smith. MR 0352639
- Wolfgang Hahn, Stability of motion, Die Grundlehren der mathematischen Wissenschaften, Band 138, Springer-Verlag New York, Inc., New York, 1967. Translated from the German manuscript by Arne P. Baartz. MR 0223668, DOI 10.1007/978-3-642-50085-5
- Alberto Isidori, Nonlinear control systems, 2nd ed., Communications and Control Engineering Series, Springer-Verlag, Berlin, 1989. An introduction. MR 1015932, DOI 10.1007/978-3-662-02581-9
- Russell A. Johnson, Kenneth J. Palmer, and George R. Sell, Ergodic properties of linear dynamical systems, SIAM J. Math. Anal. 18 (1987), no. 1, 1–33. MR 871817, DOI 10.1137/0518001
- E. C. Joseph, Stability radii of two dimensional bilinear systems: Lyapunov exponents approach, 1993, Ph.D. Thesis, Department of Mathematics, Iowa State University, Ames.
- M.A. Lyapunov, General Problems in the Stability of Motion, (in Russian) Comm. Soc. Math. Kharkow, 1892 (reprinted in Ann.Math.Studies 17, Princeton (1949)).
- Ricardo Mañé, Ergodic theory and differentiable dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 8, Springer-Verlag, Berlin, 1987. Translated from the Portuguese by Silvio Levy. MR 889254, DOI 10.1007/978-3-642-70335-5
- R. K. Miller, Almost periodic differential equations as dynamical systems with applications to the existence of A.P. solutions, J. Differential Equations 1 (1965), 337–345. MR 185221, DOI 10.1016/0022-0396(65)90012-4
- V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč. 19 (1968), 179–210 (Russian). MR 0240280
- Robert J. Sacker and George R. Sell, A spectral theory for linear differential systems, J. Differential Equations 27 (1978), no. 3, 320–358. MR 501182, DOI 10.1016/0022-0396(78)90057-8
- Dietmar Salamon and Eduard Zehnder, Flows on vector bundles and hyperbolic sets, Trans. Amer. Math. Soc. 306 (1988), no. 2, 623–649. MR 933310, DOI 10.1090/S0002-9947-1988-0933310-9
- L.A.B. San Martin and P.A. Tonelli, Semigroup actions on homogeneous spaces, Semigroup Forum 50 (1995), 59–88.
- George Seifert, Almost periodic solutions for almost periodic systems of ordinary differential equations, J. Differential Equations 2 (1966), 305–319. MR 204775, DOI 10.1016/0022-0396(66)90071-4
- Reinhold Baer, Nets and groups, Trans. Amer. Math. Soc. 46 (1939), 110–141. MR 35, DOI 10.1090/S0002-9947-1939-0000035-5
Bibliographic Information
- Fritz Colonius
- Affiliation: Institut für Mathematik, Universität Augsburg, 86135 Augsburg, Germany
- Wolfgang Kliemann
- Affiliation: Department of Mathematics, Iowa State University, Ames, Iowa 50011
- Received by editor(s): January 25, 1994
- Received by editor(s) in revised form: March 31, 1995
- Additional Notes: This research was partially supported by DFG grant no. Co 124/8-2 and ONR grant no. N00014-93-1-0868
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 4389-4408
- MSC (1991): Primary 34D08, 93B05, 58F25
- DOI: https://doi.org/10.1090/S0002-9947-96-01523-1
- MathSciNet review: 1329531