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Abstract. For a linear flow Φ on a vector bundle π : E → S a spectrum can
be defined in the following way: For a chain recurrent component M on the
projective bundle PE consider the exponential growth rates associated with
(finite time) (ε, T )-chains in M, and define the Morse spectrum ΣMo(M,Φ)
over M as the limits of these growth rates as ε → 0 and T → ∞. The
Morse spectrum ΣMo(Φ) of Φ is then the union over all componentsM⊂ PE.
This spectrum is a synthesis of the topological approach of Selgrade and Sala-
mon/Zehnder with the spectral concepts based on exponential growth rates,
such as the Oseledec̆ spectrum or the dichotomy spectrum of Sacker/Sell. It
turns out that ΣMo(Φ) contains all Lyapunov exponents of Φ for arbitrary
initial values, and the ΣMo(M,Φ) are closed intervals, whose boundary points
are actually Lyapunov exponents. Using the fact that Φ is cohomologous to
a subflow of a smooth linear flow on a trivial bundle, one can prove integral
representations of all Morse and all Lyapunov exponents via smooth ergodic
theory. A comparison with other spectral concepts shows that, in general, the
Morse spectrum is contained in the topological spectrum and the dichotomy
spectrum, but the spectral sets agree if the induced flow on the base space is
chain recurrent. However, even in this case, the associated subbundle decom-
positions of E may be finer for the Morse spectrum than for the dynamical
spectrum. If one can show that the (closure of the) Floquet spectrum (i.e.
the Lyapunov spectrum based on periodic trajectories in PE) agrees with the
Morse spectrum, then one obtains equality for the Floquet, the entire Os-
eledeč, the Lyapunov, and the Morse spectrum. We present an example (flows

induced by C∞ vector fields with hyperbolic chain recurrent components on
the projective bundle) where this fact can be shown using a version of Bowen’s
Shadowing Lemma.

1. Introduction

For a linear, time invariant differential equation ẋ = Ax in Rd the corresponding
eigenspace structure can be described in two different ways: Let V be the sum of
(generalized) eigenspaces of A corresponding to all eigenvalues λi with equal real
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part. Then

x ∈ V iff λ+(x) = λ−(x) = Reλi,

where λ+ and λ− are the Lyapunov exponents of the solution Φtx, defined by

λ+(x) = lim sup
t→∞

1

t
log |Φtx| , λ−(x) = lim sup

t→−∞

1

t
log |Φtx|.

Besides this characterization through exponential growth rates, the subspace V can
be described topologically, by looking at the induced differential equation on the
real projective space Pd−1: The projection of V onto Pd−1 is a component of the
chain recurrent set of the projected flow.

For linear, time variant differential equations such a decomposition of Rd is,
in general, not possible—this is the problem of Lyapunov regularity. Therefore,
one has to use more general spectral concepts, which can be developed in various,
convincing ways if the linear system is a part of a dynamical system, i.e. a cocycle
over a base flow: One considers a linear flow Ψ : R × E → E on a vector bundle
π : E → S and defines the Lyapunov exponents λ(e) for e ∈ E as above using
the cocycle. The characterization via exponential growth rates is essentially used
in the theory of exponential dichotomies (see e.g. [DK], [Cp], [SS2], [Sl]) and in
Oseledec̆ theory [Os] in order to obtain ‘regular’ spectral concepts for linear flows. In
particular, the corresponding ‘eigenspace structure’, i.e. (continuous or measurable)
subbundle decompositions of E, are obtained by looking at points characterized by
their exponential growth behavior.

The topological approach has been used by Selgrade [Sg] and by Salamon and
Zehnder [SZ]. For linear flows on vector bundles the exponential growth rates of
trajectories in different chain recurrent components of the projected flow on the
projective bundle PE may be equal (cf. e.g. the simple, but elucidating example
in [SZ], p. 626, or the example in the context of bilinear control theory in [CK1],
Example 4.11). Therefore, this approach yields a finer analysis of the ‘eigenspace
structure’, i.e. here the chain recurrent components on PE. Note however, that for
a chain recurrent base space S the set of spectral values obtained via the dichotomy
spectrum of Sacker and Sell, which is based on exponential dichotomies, agrees with
the set obtained from the topological characterization on the projective bundle.

The Morse spectrum, developed in this paper, is based on the topological ap-
proach. Over a chain recurrent component M of the projected flow on PE we
consider the exponential growth rates associated with (finite time) (ε, T )-chains in
M and define the Morse spectrum ΣMo(M,Ψ) of the linear flow Ψ overM as the
limits of these growth rates as ε→ 0 and T →∞. The Morse spectrum ΣMo(Ψ) is
then the union over all componentsM⊂ PE. Thus this paper goes one step further
in the program initiated by Conley [Cn], Selgrade [Sg] and Salamon and Zehnder
[SZ]: It starts from the topological characterization, but defines a spectrum via
exponential growth rates. Thus it can be viewed as a synthesis of both approaches.
It turns out that the Morse spectrum contains the Lyapunov spectrum of the flow
Ψ, and it is in general finer than the topological and the dynamical spectrum. Over
a chain recurrent base space S the sets of spectral values agree for all three con-
cepts, but the associated subbundle decomposition (the ‘eigenspace structure’) of
the Morse spectrum can be finer. An advantage of the Morse spectrum is its close-
ness to the Lyapunov spectrum: If it is possible to ‘close’ the defining (ε, T )-chains
approximately via trajectories of the projected flow, then one may be able to show
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that the Lyapunov and the Morse spectrum agree. An example for this fact is
presented in Section 6, using a refined version of Bowen’s Shadowing Lemma, see
also [CK6] for results on the Lyapunov spectrum of L∞-families of time varying
matrices.

Another connection between the topological approach and the approach based on
exponential growth rates has been established by Bronstein and Chernii [BC]. They
showed that a decomposition into exponentially separated subbundles is equivalent
to an attractor-repeller decomposition in the projective bundle. We will use their
result in order to show that the intervals of the Morse spectrum over a chain recur-
rent base space are strictly ordered.

The contents of this paper are as follows: After the introductory Section 2, col-
lecting some basic notions and facts on linear flows on vectorbundles, the central
Section 3 introduces the concept of the Morse spectrum. It is shown that the peri-
odic Morse spectrum (based on periodic (ε, T )-chains) consists of closed intervals,
and it contains all Lyapunov exponents for arbitrary initial points. Furthermore, it
enjoys an upper semicontinuity property with respect to perturbations of the flow.

In Section 4 we show that the boundary points of the Morse spectral intervals are
attained as actual Lyapunov exponents for almost all initial values in the support of
ergodic invariant measures on the projective bundle. This implies in particular that
the periodic Morse spectrum and the Morse spectrum agree. The main tools for
these results are the facts that every linear flow on a vector bundle is cohomologous
to a subflow of a smooth linear flow on a trivial bundle, and that for smooth
flows on these bundles the Krylov-Bogolyubov construction of invariant measures
can be generalized to chains. Then the Morse spectrum can be analyzed using
smooth ergodic theory, which also yields integral representations for all Lyapunov
exponents.

Section 5 discusses the relations of the Morse spectrum to other spectral con-
cepts, namely the topological spectrum [SZ], the dichotomy (or dynamical) spec-
trum [SS2], the Oseledec̆ spectrum [Os], and the Lyapunov spectrum of the flow.
One obtains the following chain of inclusions

∂Σdic ⊂ ∂ΣMo ⊂
⋃

µ ergodic

ΣOs(µ) ⊂
⋃

µ stationary

ΣOs(µ)

⊂ ΣLy ⊂ ΣMo ⊂ Σtop ⊂ Σdic.

Over a chain recurrent base space the last two inclusions are equalities. Further-
more, the relations between the associated subbundle decompositions are analyzed.

It holds that (with ΣFl denoting the Floquet (i.e. periodic) spectrum of a flow)

ΣF` ⊂
⋃

µ ergodic

ΣOs(µ) ⊂ ΣLy ⊂ ΣMo.

Therefore, if one can show that c`ΣF` = c`ΣMo, then all four sets of spectral values
agree. This property holds, if chains can be shadowed in such a way by actual
trajectories on the projective bundle, that the chain exponent and the Lyapunov
exponent are close. This idea is carried out in Section 6 for C∞ vector fields with
hyperbolic chain recurrent components of the induced flow on the projective bundle.
The main tool is a refined version of the continuous time Shadowing Lemma.
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2. Basic Concepts for Flows on Vector Bundles

A continuous time flow on a metric space (S, d) is given by a continuous map

Ψ : R× S → S with

Ψ(0, p) = p, Ψ(t,Ψ(s, p)) = Ψ(t+ s, p)

for all t, s ∈ R, p ∈ S. As usual, we write Ψt := Ψ(t, ·). Note that each Ψt is a
homeomorphism in this setup. For A ⊂ S, the ω-limit set of A is given by

ω(A) := {q ∈ S; there are pk ∈ A, tk →∞ with Ψ(tk, pk)→ q as k →∞},
and similarly for ω∗(A) via tk → −∞.

An (ε, T )-chain ζ of Ψ is given by (cf. [Cn], Section II or [Ak])

n ∈ N, T0, . . . , Tn−1 ≥ T, and p0, . . . , pn−1 ∈ S such that

d(Ψ(Ti, pi), pi+1) < ε for i = 0, . . . , n− 1.

An (ε, T )-chain is called periodic, if pn = p0. The chain recurrent set R(Ψ) is de-
fined asR(Ψ) = {p ∈ S; for all ε, T > 0 there is a periodic (ε, T )-chain with p = p0}.
The restricted flow Ψ|R(Ψ) is chain recurrent, which is equivalent to the fact that
R(Ψ) = A∪A∗ for every attractor-repeller pair (A,A∗) of Ψ|R(Ψ). A chain recur-
rent flow on a connected space is chain transitive. Hence Ψ restricted to a connected
componentM of R(Ψ) is chain transitive. The number of these connected compo-
nents is finite iff there exists a finest Morse decomposition {M1, . . . ,Mm}; in this
case the Morse sets Mi coincide with the connected components of R(Ψ).

We use the standard definition of (real) vector bundles π : E → S, as given
e.g. in [Ka], Chapter I: π is a continuous surjection such that the fibers Ep :=
π−1(p), p ∈ S, are d-dimensional (real) vector spaces and E is locally isomorphic to
S×Rd. Our base space S will be a compact, connected metric space. Furthermore,
we keep fixed a (Riemannian) metric on E, constructed by adding up the inner
products obtained from a finite coordinate covering of E (cf. [Ka], Theorem I.8.7,
or [SZ], Appendix). Note that any two metrics on E are isomorphic (cf. [Ka],
Theorem I.8.8 and Corollary I.8.9). We denote the inner product by 〈·, ·〉, and the
metric by | · |.

The zero section Z in E is a continuous map Z : S → E given by Z(p) = 0 ∈ Ep.
For the following construction compare e.g. [SZ], Appendix. The projective bundle
PE is given by PE = (E\Z)/ ∼, where e ∼ e′ if π(e) = π(e′) and there exists α ∈ R
with e = αe′. The canonical projection map will be denoted by P : E \ Z → PE.
For A ⊂ E we write PA = {Pe; e ∈ A \ Z}. There exists a unique projection
Pπ : PE → S such that the following diagram commutes

E \ Z P

π

PE

Pπ

S

Note that PE is a compact metric space, iff S is compact.
A linear flow Φ on a vector bundle π : E → S is a flow on E preserving fibers

such that

Φ(t, e1 + e2) = Φ(t, e1) + Φ(t, e2), t ∈ R, e1, e2 ∈ Ep, and

Φ(t, αe) = αΦ(t, e), t ∈ R, α ∈ R, e ∈ Ep,
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i.e. the induced maps Φ(t, ·)p : Ep → Eπ(t,e) are linear. Φ induces a flow πΦ on the
base space S, which we denote by p · t for t ∈ R, p ∈ S, and a flow PΦ on E, see
[SZ], Lemma 2.1.

A cohomology F between a linear flow Φ on π1 : E1 → S and a linear flow Ψ
on π2 : E2 → S is a fiber respecting homeomorphism F : E1 → E2 such that the
induced maps Fp on the fibers are linear, and the diagram

E1
F−−−−→ E2

Φt

y yΨt

E1
F−−−−→ E2

commutes. A cohomology F between Φ and Ψ induces a homeomorphism PF on
the associated projective bundles such that

PE1
PF−−−−→ PE2

PΦt
y yPΨt
PE1 −−−−→

PF
PE2

(2.1)

commutes for all t ∈ R.
A linear flow Φ on a trivial bundle S × Rd is called smooth if there exists a

continuous function A : S → g`(d,R) such that the Rd-component satisfies for all
t ∈ R

d

dt
Φ(t, p)x = A(p · t)Φ(t, p)x, (p, x) ∈ S × Rd.(2.2)

Here we have written Φ(t, p)x instead of Φ(t, (p, x)) to emphasize that (2.2) concerns
the Rd-component of the flow, i.e. the associated cocycle. The following results
will be needed in Section 4.

2.1. Lemma. Let Φ be a smooth linear flow on S × Rd with A(p) given in (2.2).
Then

log |Φ(t, p)x| − log |x| =
t∫

0

〈A(p · τ)x, x〉dτ

for t ∈ R, (p, x) ∈ S × Rd. Here 〈·, ·〉 and | · | denote the inner product, and the
corresponding metric in Rd.

This result follows easily by differentiating |Φ(t, p)x|2. For future use we define
the continuous function

q : S × Pd−1 → R, q(p, x) = 〈A(p)x, x〉.(2.3)

(Pd−1 is the projective space in Rd.)

2.2. Lemma. Let Φ be a linear flow on S × Rd. Then Φ is cohomologous to a
smooth linear flow Ψ on S × Rd.

For a proof see e.g. [EJ], Lemma 1.21 (smoothing lemma) or [JPS], Lemma 3.2.
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3. The Morse Spectrum

In this section we introduce the Morse spectrum of linear flows on vector bundles.
It is based on Morse decompositions of the flow on the projective bundle, and
consists of limits of (finite time) exponential growth rates of (ε, T )-chains. The
Morse spectrum is the union of (not necessarily disjoint) intervals, and contains the
Lyapunov spectrum of the flow. In fact, as we will see in Section 4, the boundary
points of the intervals are actually Lyapunov exponents.

First of all, we summarize some results on the form of the chain recurrent compo-
nents of the projected flow PΦ and their relation to the chain recurrent components
of the induced flow on the base space S.

3.1. Theorem. Let Φ be a linear flow on a vector bundle π : E → S with projected
flow PΦ on Pπ : PE → S. Let M ⊂ S be a chain recurrent component of the induced
flow on S.

(i) The chain recurrent set of PΦ|(Pπ)−1M has finitely many components (Morse
sets) M1, . . . ,M` with 1 ≤ ` = `(M) ≤ d := dimEp, p ∈ S.

(ii) Every Mi defines a (continuous, constant dimensional) subbundle of π−1M
via

Vi := {e ∈ π−1M ; e /∈ Z ⇒ Pe ∈ Mi}(3.1)

and the following decomposition into a Whitney sum holds

π−1M = V1 ⊕ · · · ⊕ V`.(3.2)

(iii) Conversely, every chain recurrent componentM of PΦ is of the form described
in (ii), in particular Pπ(M) is a chain recurrent component in S.

(iv) The chain recurrent sets R(PΦ) and R(πΦ) satisfy

R(PΦ) = P(π−1(R(πΦ))).(3.3)

Proof. Let M be a chain recurrent component of the flow on the base space S. Note
that π|π−1M : π−1M → S is a vector bundle (local trivialization is obtained by
restricting the charts of π : E → S), and the induced flow on S restricted to M is
chain recurrent. Now (i) and (ii) follow from [Sg], Theorem 9.7, or [CK4], Theorem
4.5.

Conversely, let M be a chain recurrent component of PΦ. Then Pπ(M) is a
chain transitive set in S. It remains to prove maximality. Let M ⊂ S be the
chain recurrent component containing Pπ(M). Now apply the first part of the
theorem to M : It follows that M is contained in a chain recurrent component
Mi of PΦ|(Pπ)−1M with Pπ(Mi) = M by the subbundle property of Vi. From
maximality of M, it follows that M =Mi, proving (iii).

Finally, (3.3) follows from (i) and (iii).

The Morse spectrum of a linear flow Φ will be defined as the limits of (finite time)
exponential growth rates of (ε, T )-chains in the chain recurrent components of PΦ:
Let Φ : R×E → E be a linear flow on a vector bundle π : E → S. For ε, T > 0 an
(ε, T )-chain ζ of PΦ is given by n ∈ N, T0, . . . , Tn−1 ≥ T,Pe0, . . . ,Pen ∈ PE with
d(PΦ(Ti,Pei),Pei+1) < ε for i = 0 . . . n− 1. (Here d(·, ·) is the induced metric on
PE.) Define the exponential growth rate of ζ by

λ(ζ) =

(
n−1∑
i=0

Ti

)−1 n−1∑
i=0

(log |Φ(Ti, ei)| − log |ei|)(3.4)
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with ei ∈ P−1(Pei). Recall that | · | is a (fixed) metric on E.

3.2. Definition. Let Φ be a linear flow on a vector bundle. Define the Morse
spectrum of Φ on a chain recurrent component M of the projected flow PΦ as

ΣMo(M,Φ) ={λ ∈ R; there are εk → 0, T k →∞ and (εk, T k)-chains ζk in

M with λ(ζk)→ λ as k →∞}.
The Morse spectrum of Φ (on π : E → S) is

ΣMo(Φ) = ∪{ΣMo(M,Φ);M is a chain recurrent component of PΦ}.
For a compact invariant set T ⊂ PE we define the Morse spectrum ΣMo(T ,Φ)

of Φ on T as the union of the Morse spectra of the chain recurrent components of
PΦ|T defined as above.

The following lemma collects some simple facts about the Morse spectrum.

3.3. Lemma. Let Φ be a linear flow on a vector bundle π : E → S. Then

(i) ΣMo(Φ) = ΣMo(Φ|π−1(R(πΦ))),
(ii) ΣMo(Φ) =

⋃
{ΣMo(Φ|π−1M); M is a chain recurrent component of πΦ}.

(iii) If {M1 . . .Mn} is a Morse decomposition of the base flow πΦ, then ΣMo(Φ) =
n⋃
j=1

ΣMo(Φ|π−1Mj), in particular, if πΦ has a finest Morse decomposition

{M1, . . . ,Mn}, then ΣMo(Φ) =
n⋃
j=1

`(Mj)⋃
i=1

ΣMo(Mji,Φ). Here Mji, i = 1,

. . . , `(Mj), denote the chain recurrent components of PΦ|(Pπ)−1Mj.

Proof. Part (i) follows from Theorem 3.1(iv), while (ii) and (iii) are immediate
consequences of the definitions and of Theorem 3.1(i) and (iii).

For the rest of this section we will work with the periodic Morse spectrum,
which has nice regularity properties. Recall that the periodic part of the Lyapunov
spectrum are the Floquet exponents, and these are a part of the regular Lyapunov
spectrum. It is an open question, under which conditions the Lyapunov spectrum
agrees with (the closure of) the Floquet spectrum (see [CK6] for a result in this
direction on L∞-families of time varying matrices). However, it will be shown in
Section 4. that the Morse spectrum and the periodic Morse spectrum always agree.

3.4. Definition. Let Φ be a linear flow on a vector bundle, and letM be a chain
recurrent component of the projected flow PΦ. Define the periodic Morse spectrum
of Φ on M as

ΣpMo(M,Φ) ={λ ∈ R; there are εk → 0, T k →∞ and periodic (εk, T k)-chains

ζk in M with λ(ζk)→ λ as k →∞}.
As in Definition 3.2. we define ΣpMo(Φ) and ΣpMo(T ,Φ).

Note that the results from Lemma 3.3. remain valid for the periodic Morse spec-
trum. The following result describes the behavior of the periodic Morse spectrum
under time reversal.

3.5. Proposition. For a linear flow Φ on a vector bundle π : E → S let the
corresponding time reversed flow Φ∗ be given by

Φ∗(t, e) := Φ(−t, e), t ∈ R, e ∈ E.(3.5)
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Then we have R(PΦ) = R(PΦ∗) and ΣpMo(Φ) = −ΣpMo(Φ
∗).

Proof. Recall that the chain recurrent set of a flow is the intersection over all A∪A∗,
where A is an attractor and A∗ its complementary repeller [Cn], Section II.6.2. or
[Ak]. Under time reversalA and A∗ exchange their respective roles, and one obtains
the first assertion. This follows also from the following more explicit construction,
which we need for the second assertion:

Let M be a chain recurrent component of PΦ (and of PΦ∗). For ε, T > 0
let ζ be a periodic (ε, T )-chain of PΦ in M given by n ∈ N, T0, . . . , Tn−1 ≥ T
and Pe0, . . . ,Pen ∈ PE. An (ε, T )-chain ζ∗ of PΦ∗ in M is obtained by ‘going
backwards’: Let T ∗0 , . . . , T

∗
n−1 ≥ T and Pe∗0, . . . ,Pe∗n ∈ PE be defined by

T ∗i := Tn−i−1, i = 0, . . . , n− 1,

Pe∗i := PΦ(Tn−i−1,Pen−i−1), i = 0, . . . , n− 1,

Pe∗n := Pe∗0.
Then we have for i = 0 . . . n− 2

d(PΦ∗(T ∗i ,Pe∗i ), Pe∗i+1)

=d(PΦ∗(Tn−i−1,PΦ(Tn−i−1,Pen−i−1)),PΦ(Tn−i−2,Pen−i−2))

=d(Pen−i−1,PΦ(Tn−i−2,Pen−i−2)) < ε

and

d(PΦ∗(T ∗n−1,Pe∗n−1),Pe∗n) = d(Pe0,PΦ(tn−1, en−1)) < ε.

For the chain exponents we obtain

λ(ζ) =

(
n∑
i=0

Ti

)−1 n−1∑
i=0

(log |Φ(Ti, ei)| − log |ei|)

=

(
n−1∑
i=0

T ∗i

)−1 n−1∑
i=0

(log |e∗n−i−1| − log |Φ∗(T ∗n−i−1, e
∗
n−i−1)|)

= −λ(ζ∗).

Next we show that the periodic chain spectrum over a chain transitive set in PE
is an interval.

The proof is based on a ‘mixing’ of exponents near the extremal values of the
spectrum.

3.6. Theorem. Let Φ be a linear flow on a vector bundle π : E → S, and let
T ⊂ PE be closed and PΦ-invariant such that PΦ|T is chain transitive. Define

κ∗p(T ) := inf ΣpMo(T ,Φ) , κp(T ) := sup ΣpMo(T ,Φ).(3.6)

Then ΣpMo(T ,Φ) = [κ∗p(T ), κp(T )].

Proof. It suffices to show that for all λ ∈ [κ∗p(T ), κp(T )], all δ > 0, and all ε, T > 0
there is a periodic (ε, T )-chain ζ in T with

|λ(ζ) − λ| < δ.(3.7)

Then closedness of the Morse spectrum yields the result. Fix δ > 0 and ε, T > 0.
There are periodic (ε, T )-chains ζ∗ and ζ in T with

λ(ζ∗) < κ∗p(T ) + δ , λ(ζ) > κp(T )− δ.
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Denote the initial points of ζ∗ and ζ by Pe∗0 and Pe0, respectively.
By chain transitivity there are (ε, T )-chains ζ1 from Pe∗0 to Pe0 and ζ2 from Pe0 to

Pe∗0, both in T . For k ∈ N let ζ∗k and ζk be the k-fold concatenation of ζ∗, and of ζ,
respectively. Then for k, ` ∈ N the concatenation ζk,` = ζ2 ◦ζk ◦ζ1◦ζ∗` is a periodic
(ε, T )-chain in T . Note that the exponents of concatenated chains are convex
combinations of the corresponding exponents. Hence for every λ ∈ [λ(ζ∗), λ(ζ)] one
finds numbers k, ` ∈ N such that |λ(ζk,`)− λ| < δ. This proves (3.7).

The next result shows that the periodic Morse spectrum contains the entire
Lyapunov spectrum of the flow Φ. The relation of the Morse spectrum to other
spectral concepts will be discussed in Section 5. Recall the definition of a Lyapunov
exponent

λ(e) := lim sup
t→∞

1

t
log |Φ(t, e)|.(3.8)

The Lyapunov spectrum of a linear flow Φ on a vector bundle π : E → S is defined
as

ΣLy(Φ) := {λ(e); e ∈ E}.(3.9)

3.7. Theorem. Let Φ be a linear flow on a vector bundle π : E → S. Then for
all e ∈ E we have

λ(e) ∈ ΣpMo(ω(Pe),Φ) ⊂ ΣpMo(M,Φ),(3.10)

where M is the chain recurrent component of PΦ containing ω(Pe) ⊂ PE. In
particular

ΣLy(Φ) ⊂ ΣpMo(Φ).(3.11)

Proof. The inclusion (3.11) is a direct consequence of (3.10). In order to show
(3.10) recall that ω-limits sets are connected and contained in the chain recurrent
set. Hence the component M containing ω(Pe) is well defined for e ∈ E. We
have to show the following: For all δ > 0, and all ε, T > 0 there exists a periodic
(ε, T )-chain ζ in ω(Pe) with

|λ(e)− λ(ζ)| < δ.(3.12)

Fix δ > 0, ε > 0, T > 1. Since PΦ is uniformly continuous on the compact set
[0, 2T ] × PE, there is δ1 = δ1(δ, ε, T ) > 0 such that for all Pa,Pb ∈ PE with
d(Pa,Pb) < δ1 it follows that

d(PΦ(t,Pa),PΦ(t,Pb)) <
ε

3
(3.13)

and

| log |Φ(t, a)| − log |Φ(t, b)|| < δ

4
(3.14)

for all t ∈ [0, 2T ], where a ∈ P−1(Pa), b ∈ P−1(Pb) are chosen appropriately with
|a| = |b| = 1. We may assume that |e| = 1 and that

d(PΦ(t,Pe), ω(Pe)) < δ1 for all t > 0,(3.15)

replacing, if necessary, e by |Φ(τ, e)|−1Φ(τ, e) for τ large enough. By definition of
the Lyapunov exponent there are tn →∞ with

λ(e) = lim
n→∞

1

tn
log |Φ(tn, e)|,
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where we can assume without loss of generality that PΦ(tn, e) converges for tn →∞.
Now fix N ∈ N such that for all n ≥ N

d(PΦ(tn, e),PΦ(tN , e)) <
ε

3
.(3.16)

Setting σn = tn − tN we have

λ(e) = λ(Φ(tN , e)) = lim
n→∞

1

σn
log |Φ(σn,Φ(tN , e))|.

Choose n large enough such that with T0 := σn we have T0 > 2T and

|λ(e)− 1

T0
log |Φ(T0,Φ(tN , e))|| <

δ

2
.(3.17)

Clearly, (3.15) remains valid with Φ(tN , e) instead of e. Hence writing e instead of
Φ(tN , e) in (3.16) and (3.17), we obtain in addition to (3.15)

d(PΦ(T0,Pe),Pe) <
ε

3
, and(3.18)

|λ(e) − 1

T0
log |Φ(T0, e)|| <

δ

2
.(3.19)

We partition the interval [0, T0] into pieces of length τj with T ≤ τj < 2T with
j = 0, . . . , `− 1. Thus

T0 =
`−1∑
j=0

τj and T0 > `.(3.20)

Set y0 = e, yj+1 = Φ(τj , yj) for j = 0, . . . , `− 1. Then Φ(T0, e) = y` and

1

T0
log |Φ(T0, e)| =

1

T0

`−1∑
j=0

(log |yj+1| − log |yj |)(3.21)

=

`−1∑
j=0

τj

−1
`−1∑
j=0

(log |Φ(τj , yj)| − log |yi|).

Define an ( ε3 , T )-chain ζ̃ in PE by ` ∈ N, τ0, . . . , τ`−1 ≥ T, Py0, . . . ,Py`−1,Py0 ∈
PE, noting that by (3.18) we have

d(PΦ(τ`−1,Py`−1),Py0) <
ε

3
.(3.22)

Using (3.21) we obtain

λ(ζ̃) =
1

T0
log |Φ(T0, e)|.(3.23)

But the chain ζ̃ is not necessarily contained in ω(Pe). In order to obtain an appro-
priate chain ζ in ω(Pe), we use (3.13) and (3.15): For Pyj = PΦ(τj ,Pyj−1) (j =
0 . . . `− 1) we find points Pz0, . . . ,Pz`−1,Pz` = Pz0 in ω(Pe) with

d(PΦ(t,Pyj),PΦ(t,Pzj)) <
ε

3
for t ∈ [0, 2T ].
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Hence we obtain for j = 0, . . . , `− 1

d(PΦ(τj ,Pzj),Pzj+1) ≤ d(PΦ(tj ,Pzj),PΦ(τj ,Pyj))
+ d(PΦ(τj ,Pyj),Pyj+1) + d(Pyj+1,Pzj+1)

<
ε

3
+
ε

3
+
ε

3
= ε,

where for j = `−1 we have used (3.22). We have shown that ` ∈ N, τ1, . . . , τ`−1 ≥ T ,
and Pz0, . . . ,Pz`−1,Pz` = Pz0 ∈ PE define a periodic (ε, T )-chain in ω(Pe).

For the exponential growth rate of the chain ζ (3.19) and (3.23) yield

|λ(e)− λ(ζ)| ≤ |λ(e) − 1

T0
log |Φ(T0, e)||+ |λ(ζ̃)− λ(ζ)|

<
δ

2
+

1

T0

`−1∑
j=o

{log |Φ(τj , yj)| − log |yj| − [log |Φ(tj , zj)| − log |zj|]} .

Here we may take yj ∈ P−1(Pyi) and zj ∈ P−1(Pzj) appropriately to obtain from
(3.14), (3.15) and (3.20)

|λ(e) − λ(ζ)| < δ

2
+

1

T0
`
δ

2
< δ.

This proves (3.12) and concludes the proof of the theorem.

3.8. Remark. A flow restricted to an ω-limit set is chain transitive, see e.g. [Cn],
Section II.6.3.C. Hence combining Theorems 3.6 and 3.7 we obtain for all e ∈ E

λ(e) ∈ [κ∗p(ω(Pe)), κp(ω(Pe))].(3.24)

In fact, the proof of Theorem 3.7 shows that all limit points of 1
t log |Φ(t, e)| for

t→∞ are contained in [κ∗p(ω(Pe)), κp(ω(Pe))].

3.9. Remark. The result (3.10) remains true for linear flows on vector bundles over
a noncompact base space S, provided that the positive orbit {Φ(t, e); t ≥ 0} is
relatively compact.

3.10. Remark. Let λ−(e) := lim sup
t→−∞

1
t log |Φ(t, e)| be the backward Lyapunov expo-

nent of e ∈ E under the flow Φ. Then λ−(e) ∈ ΣpMo(Φ|P−1(ω∗(Pe)) ⊂ ΣpMo(M∗,Φ),
whereM∗ is the chain recurrent component of PΦ containing ω∗(Pe). This is proved
in exactly the same way as Theorem 3.7, using the periodicity of the approximating
chains.

The rest of this section is concerned with the behavior of the Morse spectrum
under perturbations of the flow. In general, continuity of the spectrum cannot be
expected, since it does not even hold for the chain recurrent set. However, a certain
upper semicontinuity property can be established.

We consider the following family Φα of linear flows on a vector bundle π : E → S,
parametrized by α ∈ A, where A is a compact metric space: Let Φ : A×R×E → E
be a continuous map such that for all α ∈ A

Φα := Φ(α, ·, ·) : R×E → E(3.25)

is a linear flow on π : E → S.
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3.11. Theorem. Consider the family (3.25) of parametrized linear flows. Set

Φ0 := Φα
0

for some α0 ∈ A, and let T 0 ⊂ PE be a compact, PΦ0-invariant set
such that PΦ0|T 0 is chain transitive. Assume that for every neighborhood W of T 0

there exists a neighborhood V of α0 in A such that for all α ∈ V there is a compact,
PΦα-invariant set T α with T α ⊂ W. Then

{λ ∈ R; there are αk → α0 and λk ∈ ΣpMo(T α
k

, Φα
k

) with λk → λ}
⊂ ΣpMo(T 0, Φ0|P−1(T 0)).

(3.26)

Proof. Let λ be in the set on the left hand side of (3.26), with corresponding αk

and T k := T αk . It suffices to show that for every δ > 0 and all ε, T > 0 there is a
periodic (ε, T )-chain ζ of PΦ0 in T 0 with

|λ− λ(ζ)| < δ.(3.27)

Choose δ > 0, ε > 0 and T > 1. Then there is k0 := k0(δ, ε, T ) ∈ N such that for
all k ≥ k0 the following holds: For all Pa ∈ T k there exists Pb ∈ T 0 such that for
all t ∈ [0, 2T ]

d(PΦk(t,Pa),PΦ0(t,Pb)) <
ε

3
,(3.28)

where we have set Φk := Φα
k

. This estimate follows directly from the uniform
continuity of PΦ|A× [0, 2T ]× PE and the assumptions on {T α, α ∈ A}. Similarly,
we may choose k0 large enough such that for all k ≥ k0

| log |Φk(t, a)| − log |Φ0(t, b)|| < δ

4
(3.29)

for an appropriate choice of a ∈ P−1(Pa) and b ∈ P−1(Pb). From the definition of λ
it follows that there are, for k large enough, periodic

(
ε
3 , T

)
- chains ζk of PΦk|T k,

given by nk ∈ N, T k0 , . . . , T knk ≥ T, Pyk0 . . .Pyknk ∈ T k with

d(PΦk(T kj ,Pykj ),Pykj+1) <
ε

3
for j = 0 . . . nk − 1,(3.30)

|λ− λ(ζk)| < δ

2
.(3.31)

Fix k and repeat the construction in the proof of Theorem 3.7 for each interval
[0, T kj ], j = 0 . . . nk− 1: Partition the intervals [0, T kj ] into pieces of length τkji with

T ≤ τkji < 2T . Then use (3.28)–(3.30) to find elements Pzkji ∈ T 0, which yield a

periodic (ε, T )-chain ζ0 of PΦ0 such that

|λ(ζk)− λ(ζ0)| < δ

2
.(3.32)

Now (3.31) and (3.32) yield the assertion (3.27).

It is well known (cf. e.g. [Si], Section 3.2.2) that the chain recurrent set depends
upper semicontinuously on perturbations of the flow: This set cannot increase
discontinuously under small perturbations, but it can decrease in jumps. (Actually,
it is easy to find examples, in which a chain recurrent component vanishes under
small perturbations: Take e.g. a family of one dimensional differential equations
at a saddle-node bifurcation.) With this in mind, one can prove the following
version of the preceding theorem.
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3.12. Corollary. Consider the family (3.25) of parametrized flows Φα and set

Φk := Φα
k

for a sequence αk → α0 in A. Assume that the induced flow πΦ0 on the
base space S has a finest (finite) Morse decomposition. Then

{λ ∈ R; there are λk ∈ ΣpMo(Φ
k) with λk → λ} ⊂ ΣpMo(Φ

0).(3.33)

Proof. By constructing appropriate (ε, T )-chains it is easy to see that T 0 := {Pe ∈
PE; there are Pek ∈ R(PΦk) with Pek → Pe} ⊂ R(PΦ0). T 0 is compact, and
hence for every neighborhood W of T 0 there exists K ∈ N such that for all k ≥ K
we have R(PΦk) ⊂ W. By assumption, R(πΦ0) consists of finitely many com-
ponents M1, . . . ,Mn, and hence R(PΦ0) has finitely many components Mji, j =
1 . . . n, i = 1 . . . `(Mj), compare Theorem 3.1. Therefore W can be chosen as

W =
n⋃
j=1

`(Mj)⋃
i=1

W(Mji), where the W(Mji) have pairwise disjoint closures.

Now take λ from the left hand side of (3.33). Then for each k ∈ N there exists a
chain recurrent componentMk of PΦk such that λk ∈ ΣpMo(Mk,Φk). Hence there
is a subsequence λkm → λ such that the chains approximating the λkm , m ∈ N,
are contained in one of the W(Mji). Now the proof proceeds as for Theorem
3.10, replacing T k by the corresponding chain recurrent components of PΦkm in
W(Mji).

3.13. Remark. The last theorem may be viewed as a ‘roughness’ result for the
Morse spectrum. This kind of result is well known for exponential dichotomies, cf.
e.g. [MS], Section 8, [DK], Theorem IV. 5.1, [Cp], Lecture 4, or [SS2], Theorem
6. The Lyapunov spectrum of a flow does, in general, not depend continuously on
parameters, see e.g. [LY]. However, Theorem 3.11 and Corollary 3.12 show upper
semicontinuity of the periodic Morse spectrum, which includes the Lyapunov spec-
trum by Theorem 3.7. In Section 6 we will discuss situations in which the Lyapunov
and the Morse spectrum agree, and hence upper semicontinuity of the Lyapunov
spectrum follows. Compare also [CK6] for continuity properties of both spectra
for L∞-families of time varying matrices, and [AN] for related results concerning
Lyapunov exponents of stochastic flows.

3.14. Remark. The proof of Corollary 3.12 will not yield continuity of the Morse
spectrum, even if the chain recurrent components of the family PΦα depend con-
tinuously on α. At this moment it is not clear to us, under which conditions the
Morse spectrum does vary continuously with α.

4. Ergodic Theory of the Morse Spectrum

The main result of this section is Theorem 4.6 which shows that the boundary
points of the Morse spectrum are attained as Lyapunov exponents in the support
of ergodic invariant measures. In particular, the Morse spectrum and the peri-
odic Morse spectrum agree. For the proof of Theorem 4.6, we first reduce the
problem to smooth linear flows on trivial vector bundles. A generalization of the
Krylov-Bogolyubov construction of invariant measures to chains is then used for
the development of ergodic theory for the Morse spectrum.

First of all, we analyze the behavior of the chain recurrent set and the Morse
spectrum under cohomology.

4.1. Proposition. Let F : E1 → E2 be a cohomology between the linear flows Φ
on π1 : E1 → S and Ψ on π2 : E2 → S. Then
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(i) PF (R(PΦ)) = R(PΨ),
(ii) ΣMo(Φ) = ΣMo(Ψ), ΣpMo(Φ) = ΣpMo(Ψ),
(iii) ΣLy(Φ) = ΣLy(Ψ).

Proof. (i) Note that PF : PE1 → PE2 and (PF )−1 are uniformly continuous, since
PE1 and PE2 are compact. Define for ε > 0 the modulus of continuity γ(ε) :=
sup{δ > 0; d(Pa,Pb) < δ implies d(PF (Pa),PF (Pb)) ≤ ε for Pa,Pb ∈ PE1}. Then
γ(ε) > 0, and hence a (γ(ε), T )-chain for PΦ is mapped under PF onto an (ε, T )-
chain for PΨ. In particular, PF maps the chain recurrent components of PΦ onto
chain recurrent components of PΨ.

(ii) Let λ ∈ ΣMo(M,Φ) for some chain recurrent component M of PΦ, and fix
δ > 0. It suffices to show that for all ε, T > 0 there is an (ε, T )-chain ζ for PΨ in
PF (M) with

λ(ζ) ≤ λ+ δ.(4.1)

The operator norm of the fiber maps Fp is bounded, say

‖Fp‖ ≤ c for some c > 0.(4.2)

Fix ε, T > 0 with 1
T log c < δ

2 . As above, a (γ(ε), T )-chain ζ̃ of PΦ gives rise to
an (ε, T )-chain ζ for PΨ, which can be described by n ∈ N, T0, . . . , Tn−1 ≥ T , and

PF (Pe0), . . . ,PF (Pen). We may choose ζ̃ in M with

λ(ζ̃) ≤ λ+
δ

2
,(4.3)

and obtain for λ(ζ) with ei ∈ P−1(Pei)

λ(ζ) =

(
n−1∑
i=0

Ti

)−1 n−1∑
i=0

(log |Ψ(Ti, Fei)| − log |Fei|).

Choose ei with |Fei| = 1. Then we obtain by cohomology using (4.2) and (4.3)

λ(ζ) =

(
n−1∑
i=0

Ti

)−1 n−1∑
i=0

log |FΦ(Ti, ei)|

≤
(
n−1∑
i=0

Ti

)−1 n−1∑
i=0

(log ‖Fπei‖+ log |Φ(Ti, ei)|)

≤ δ

2
+ λ(ζ̃)

≤ λ+ δ.

Since PF maps periodic chains into periodic chains, this argument also proves the
second part of (ii).

(iii) The well known assertion for the Lyapunov spectrum follows similarly, see
e.g. [JPS].

Next we show that every linear flow on a vector bundle is cohomologous to a
subflow of a smooth linear flow on a trivial vector bundle, and that the Morse
spectrum is preserved under this cohomology. The proof is based on a construction
due to [JPS], Lemma 3.4.
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4.2. Theorem. Let Φ be a linear flow on a vector bundle π : E → S. Then there
exists a smooth linear flow Ψ on a trivial bundle S × Rm for some m ∈ N, and a
decomposition S×Rm = E′⊕E′′ into Ψ-invariant subbundles such that there exists
a cohomology F between Φ and Ψ|E′, and the following holds:

PF (R(PΦ)) = R(PΨ|PE′),(4.4)

R(PΨ) = R(PΨ|PE′)∪̇R(PΨ|PE′′),(4.5)

ΣMo(Φ) = ΣMo(Ψ|E′), ΣpMo(Φ) = ΣpMo(Ψ|E′),(4.6)

ΣMo(Ψ) = ΣMo(Ψ|E′)∪̇ΣMo(Ψ|E′′),(4.7)

ΣpMo(Ψ) = ΣpMo(Ψ|E′)∪̇ΣpMo(Ψ|E′′);

here ∪̇ denotes disjoint union.

Proof. By a well known result in the theory of vector bundles (see e.g. [Ka], The-
orem I.6.5) there exists m ∈ N and a subbundle decomposition S × Rm = E1 ⊕E2

such that E1 is isomorphic (as a vector bundle) to E. Hence there is an orthogonal
projection Q1 : S × Rm = E1 ⊕ E2 → E1, and an isomorphism I1 : E → E1 such

that E
I1
↪→ E1 −→ E1 ⊕E2

Q1−→ imQ1 = E1 is an isomorphism, which we denote by
G1. Q1 induces a continuous map (cocycle) W1 : S −→ g(m, d) (the Grassmannian
of d-dimensional subspaces in Rm), defined by W1 = Q1 ◦ π−1. (Note that W1 is
well defined, although π−1 is not a map.) Recall that d = dimEp.

By [JPS], Lemma 3.3 there exists a smooth map W2 : S −→ g(m, d), uniformly
close to W1. Here smooth means that the map p 7→ d

dtW2(p · t) from S into the
tangent bundle of g(m, d) exists and is continuous. Define Q2 : E1⊕E2 −→ S×Rm

such that W2 = Q2 ◦ π−1, and Q⊥2 := Id − Q2. It follows that E
I1−→ E1 ↪→

E1 ⊕E2
Q2−→ imQ2 is an isomorphism of vector bundles, which we call G2.

Next we define a flow on S × Rm, which leaves imQ2 and imQ⊥2 invariant. Set

W ′2(p) = d
dtW2(p · t)(0), similarly for W⊥

′

2 (p). Let

X(p) = W ′2(p)W2(p) +W⊥
′

2 (p)W⊥2 (p) for p ∈ S

and consider the fundamental solution Λ1(t, p) of ẋ = X(p · t)x for x ∈ Rm with
Λ1(0, p) = Id. Then (cf. [DK], Theorem IV. 1.1) we obtain

W2(p · t)Λ1(t, p) = Λ1(t, p)W2(p), and

W⊥2 (p · t)Λ1(t, p) = Λ1(t, p)W⊥2 (p),

i.e. the cocycle Λ1(t, p) on Rm defines a flow that leaves imQ2 and imQ⊥2 invariant.
Now define for λ ∈ R a cocycle Λλ2 (t, p) on S × Rm through

Λλ2 (t, p)W2(p) = G2(p · t)Φ(t, p)G−1
2 (W2(p)),

Λλ2 (t, p)W⊥2 (p) = eλtΛ1(t, p)W⊥2 (p).

Then Λλ2 (t, p) satisfies for p ∈ S, t ∈ R

W2(p · t)Λλ2 (t, p) = Λλ2 (t, p)W2(p),

W⊥2 (p · t)Λλ2 (t, p) = Λλ2 (t, p)W⊥2 (p),

G2(p · t)Φ(t, p) = Λλ2 (t, p)G2(p).
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Since G2 is an isomorphism between the vector bundles π : E −→ S and π′ :
imQ2 −→ S, where π′ is given by W−1

2 , it is a cohomology between Φ and the flow
induced by Λλ2 on imQ2.

Now choose λ large enough such that we obtain for Λλ2 an exponential dichotomy
on G2(E) = imQ2 and imQ⊥2 = ker Q2. Then {PimQ2,Pker Q2} form a Morse
decomposition of PΛλ2 .

By Lemma 2.2 there exists a smooth linear flow Ψ on S×Rm, which is cohomol-
ogous to Λλ2 . Define E′ and E′′ as the images of imQ2, and ker Q2 respectively,
under this cohomology. Then (4.4) and (4.6) follow from Proposition 4.1. Formula
(4.5) is a consequence of the Morse decomposition property of {Pim Q2,Pker Q2},
which is preserved under cohomology. Finally, (4.7) follows from (4.5) and the fact
that λ separates the Morse spectra over imQ2 and ker Q2.

According to Theorem 4.2 we can analyze the Morse spectrum of any linear flow
Φ on a vector bundle by considering smooth linear flows Ψ on a trivial bundle
S × Rm. These flows allow the use of smooth ergodic theory. We start with some
concepts and notations.

Let (S, d) be a metric space, and denote its Borel σ-algebra by B. A probability
measure µ on (S,B) is called invariant for a flow Φ : R× S → S if Φtµ = µ for all
t ∈ R, i.e. if (Φtµ)(A) := µ(Φ−1

t A) = µA for all A ∈ B. The measure µ is called
ergodic if µ(A \ Φ−1

t A ∪ Φ−1
t A \A) = 0 for all t ∈ R implies µA = 1 or µA = 0.

For a linear flow Φ on a vector bundle π : E → S we use the notation

P(Φ) := {µ;µ is an invariant probability measure of PΦ on PE}
and

Pe(Φ) := {µ ∈ P(Φ);µ is ergodic}.

4.3. Lemma. Let Φ and Ψ be linear flows on vector bundles with cohomology F .
Then

P(Ψ) = {PFµ;µ ∈ P(Φ)} and Pe(Ψ) = {PFµ;µ ∈ Pe(Φ)}.

Proof. Note that PF,PΦt and PΨt are homeomorphisms for all t ∈ R. Now the
result follows from the definitions by repeated use of the commutative diagram
(2.1).

Next we generalize the Krylov-Bogolyubov construction of invariant measures to
sequences of chains. Let S be a compact metric space with a flow Φ. Let ζ be an
(ε, T )-chain of Φ on S given by n ∈ N, Ti ≥ T, pi ∈ S with i = 0 . . . n−1. Denote by
C(S) the space of real valued continuous functions on S, and define a continuous
linear functional A on C(S) by

Af :=

(
n−1∑
i=0

Ti

)−1 n−1∑
i=0

Ti∫
0

f(Φ(t, pi))dt.(4.8)

Note that for i = 0, . . . , n− 1 the map

f 7→ 1

Ti

Ti∫
0

f(Φ(t, pi))dt

defines a Radon probability measure νi on S. The measure ν corresponding to A
is a convex combination of the νi, hence also a Radon probability measure.
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Now consider for εk → 0, T k → ∞ a sequence of (εk, T k)-chains ζk, given by
nk ∈ N, T ki ≥ T k, and pki ∈ S for i = 0 . . . nk − 1, k ∈ N. Define Ak for ζk as in
(4.8), with corresponding measure νk. As k → ∞, a subsequence of {νk, k ∈ N},
denoted again by {νk}, converges weakly to a Radon probability measure µ on S,
i.e. we have for all f ∈ C(S)

lim
k→∞

nk−1∑
i=0

T ki

−1
nk−1∑
i=0

Tki∫
0

f(Φ(t, pki ))dt =

∫
S

fdµ.(4.9)

Then, using standard arguments (see e.g. [NS], Theorem VI. 9.05, or [Ma], Section
I.8), one shows that the measure µ is invariant under the flow, i.e. in particular∫

S

f(p)dµ =

∫
S

f(Φt(p))dµ for all t ∈ R.(4.10)

We will use this construction to express the boundary points of the Morse spectrum
via ergodic measures.

4.4. Lemma. Let Ψ be a smooth linear flow on the trivial bundle S × Rd, and
let T ⊂ S × Pd−1 be a compact invariant set for PΨ. Then there exist ergodic
PΨ-invariant probability measures µ∗ and µ on S × Pd−1 with

inf ΣMo(T ,Ψ) =

∫
T

qdµ∗ , sup ΣMo(T ,Ψ) =

∫
T

qdµ,(4.11)

where q : S × Pd−1 → R is the continuous function defined in (2.3).

Proof. Consider for εk → 0, T k → ∞ a sequence of (εk, T k)-chains ζk in a chain
recurrent component M of PΨ|T with

λ(ζk)→ sup ΣMo(T ,Ψ).(4.12)

The ζk are given by nk ∈ N, T ki ≥ T k, and (pki ,Pvki ) ∈ T ⊂ S × Pd−1 for i =
0 . . . nk − 1, k ∈ N. Then, by Lemma 2.1

λ(ζk) =

nk−1∑
i=0

T ki

−1
nk−1∑
i=0

(log |Ψ(T ki , p
k
i , v

k
i )| − log |vki |)

=

nk−1∑
i=0

T ki

−1
nk−1∑
i=0

Tki∫
0

q(PΨ(t, pki ,Pvki ))dt.

By the Krylov-Bogolyubov construction for chains there exists a PΨ-invariant mea-
sure µ on M as in (4.9). In particular, since q is continuous, we have

λ(ζk)→
∫
M

q dµ,(4.13)

hence µ satisfies the second equality in (4.11).
Now assume that all ergodic, PΨ-invariant measures on T violate the second

equality in (4.11). For ν-almost all (p,Pv) in the support of an ergodic invariant
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measure ν we have

λ(p, v) = lim
t→∞

1

t

t∫
0

q(PΨ(τ, p,Pv))dτ,

and hence, by our assumption,∫
T

q dν < sup ΣMo(T ,Ψ).

But the invariant measure µ in (4.13) is in the closed, convex hull of the ergodic
invariant measures on T , which contradicts (4.12), (4.13). (Compare e.g. [Ma]
Sections I.6 and II.6 for the facts on invariant measures used above.) The existence
of µ∗ satisfying the first equality in (4.11) is proved similarly.

4.5. Remark. Recall that the set of invariant probability measures for a flow on a
compact metric space is convex. Hence Lemma 4.4 shows that every element in
the Morse spectrum ΣMo(Φ), and in particular by Theorem 3.7 every Lyapunov
exponent can be written as

∫
S×Pd−1

q dµ for some PΦ-invariant probability measure

µ.

Combining Lemma 4.4 with Theorem 4.2 we obtain the following characterization
of the boundary points of the Morse spectrum for arbitrary linear flows.

4.6. Theorem. Let Φ be a linear flow on a vector bundle π : E → S, and let
T ⊂ PE be a compact, PΦ-invariant set. Then there exist ergodic, PΦ-invariant
probability measures µ∗(T ) and µ(T ) with support in T such that

κ∗(T ) := inf ΣMo(T ,Φ) = lim
t→±∞

1

t
log |Φ(t, e∗)|(4.14)

for µ∗(T )-almost all Pe∗ ∈ PE,

κ(T ) := sup ΣMo(T ,Φ) = lim
t→±∞

1

t
log |Φ(t, e)|(4.15)

for µ(T )-almost all Pe ∈ PE.

Proof. By Theorem 4.2, there exists a smooth linear flow Ψ on a trivial bundle
S × Rm, such that Φ is cohomologous via F : E → E′ to a subflow Ψ|E′, and
(4.4)–(4.7) hold. Since T ′ := PF (T ) is compact and PΨ-invariant, one finds by
Lemma 4.4 ergodic invariant measures µ∗1 and µ1 with support in T ′ such that

κ∗(T ′) =

∫
T ′

qdµ∗1 , κ(T ′) =

∫
T ′

qdµ1.

Hence (cf. e.g. [Ma], Theorem II. 6.1) it follows that for µ∗1-almost all Pe∗ ∈ PE′

κ∗(T ′) = lim
t→±∞

1

t

t∫
0

q(PΨ(τ,Pe∗))dτ = lim
t→±∞

1

t
log |Ψ(t, e∗)|,

and for µ1-almost all Pe ∈ PE′

κ(T ′) = lim
t→±∞

1

t

t∫
0

q(PΨ(τ,Pe))dτ = lim
t→±∞

1

t
log |Ψ(t, e)|.
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Lemma 4.3 shows that under PF the ergodic, invariant measures µ∗1 and µ1

correspond to ergodic, invariant measures µ∗ and µ of PΦ. Furthermore, the proof
of Proposition 4.1(ii) yields

κ∗(T ) = κ∗(T ′) and κ(T ) = κ(T ′).
Using again the properties of the cohomology F as in the proof of Proposition 4.1
(ii), we obtain (4.14) and (4.15).

4.7. Remark. A result, analogous to Theorem 4.6, holds also for the boundary
points of the dynamical spectrum, cf. [JPS], Theorem 2.3. The proof above follows
essentially the same lines.

Next we use a result due to Bronstein and Chernii [BC] showing that the decom-
position (3.2) coincides with the finest decomposition into exponentially separated
invariant subbundles, see also Bronstein [Br1], Theorems 7.22 and 7.23. Here ‘expo-
nential separation’ means that—comparing solutions starting in the same fiber—the
exponential growth rate for a solution in the first bundles is (uniformly) smaller
than for any solution in the second bundle. This notion is made precise in the
following definition.

4.8. Definition. For a linear flow Φ on a vector bundle π : E → S a pair of com-
plementary invariant subbundles (V+,V−) of E is called exponentially separated,
if there are c > 0 and µ > 0 with

|Φtv+| ≤ c exp(−µt)|Φtv−|
for all t ≥ 0 and v+ ∈ V+, v− ∈ V− with π(v+) = π(v−) and |v+| = |v−|.

4.9. Theorem. Let Φ be a linear flow on a vector bundle π : E → S with chain
recurrent flow on the base space S. Then the decomposition (3.2) into invariant
subbundles corresponding to the finest Morse decomposition of the induced flow on
the projective bundle has the following property:

If (V+,V−) are exponentially separated subbundles, then there is 1 ≤ j ≤ l such
that

V+ = V1 ⊕ · · · ⊕ Vj and V− = Vj+1 ⊕ · · · ⊕ Vl.
Conversely, if V+ and V− are defined by these equalities, then (V+,V−) are expo-
nentially separated.

Proof. By Lemma 3 in [BC] (see also Theorem 6.18 in [Br2]), a decomposition
into exponentially separated subbundles (V+,V−) is equivalent to the fact that
(PV−,PV+) is an attractor-repeller pair. Hence the claim follows from Theorem
3.1.

Combining this with our previous results we obtain the following corollary.

4.10. Corollary. Let Φ be a linear flow on a vector bundle π : E → S, and let M
be a chain recurrent component of the projected flow PΦ. Then

ΣMo(M,Φ) = ΣpMo(M,Φ).(4.16)

Furthermore ΣMo(Φ) consists of closed intervals of (periodic) chain exponents and

ΣLy(Φ) ⊂ ΣMo(Φ) =
⋃
M

[κ∗(M), κ(M)],
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whose boundary points are Lyapunov exponents. If the flow on the base space is
chain recurrent (or over a chain recurrent component in the base space), then

ΣMo(Φ) =
l⋃
i=1

ΣMo(Mi,Φ) =
l⋃
i=1

[κ∗(Mi), κ(Mi)]

whereMi are the chain recurrent components of the flow PΦ and κ∗(Mi) < κ∗(Mj)
and κ(Mi) < κ(Mj) for i < j.

Proof. Let M be a chain recurrent component of the projected flow PΦ. Then, by
Theorem 3.6, ΣpMo(M,Φ) = [κ∗p(M), κp(M)], and λ(e) ∈ ΣpMo(M,Φ) for all e ∈ E
with ω(Pe) ⊂ M by Theorem 3.7. On the other hand, Theorem 4.6 shows that
κ∗(M) = λ(e∗) and κ(M) = λ(e) for some e∗, e ∈ E with ω(Pe∗) ⊂M, ω(Pe) ⊂M.
Now the obvious inequalities κ∗(M) ≤ κ∗p(M) and κp(M) ≤ κ(M) imply (4.16).
Except for the order of the spectral intervals, the other assertions follow from
Theorems 3.1, 3.6 and 4.6.

Now let i ∈ {1, . . . , l}. By Theorem 4.9, the vector bundles V+
i =

i⊕
j=1

P−1(Mj)

and V−i =
l⊕

j=i+1

P−1(Mj) are exponentially separated. Hence there are numbers

ci > 0, µi > 0 such that for e+ ∈ V+
i , e

− ∈ V−i with πe+ = πe− and |e+| = |e−| = 1
it follows that

|Φt(e+)| ≤ ci exp(−µit)|Φt(e−)|, t ≥ 0.

For ε > 0, T > 0 consider an (ε, T )-chain ζ ⊂Mi+1 given by

n ∈ N, T0, . . . , Tn−1 ≥ T, Pe0, . . . ,Pen ∈Mi+1.

Then the growth rate λ(ζ) is

λ(ζ) =

(
n−1∑
k=0

Ti

)−1(n−1∑
k=0

log |Φ(Ti, ek)| − log |ek|
)
,

with ek ∈ P−1(Pek). Clearly, one finds an (ε, T )-chain ζ′ ⊂Mi given by

n ∈ N, T0, . . . , Tn−1, Pe′0, . . . ,Pe′n ∈ Mi

with πek = πe′k for all k. Then by exponential separation, the growth rates satisfy

λ(ζ′) ≤ λ(ζ) − µi.

Now approximate inf ΣMo(Mi+1) = inf ΣMo(V−i ) by (ε, T )-chains ζ inMi+1. Since
there are (ε, T )-chains ζ′ inMi starting in the same fibers, the estimate above shows
that

inf ΣMo(Mi) ≤ inf ΣMo(Mi+1)− µi.

The assertion for the suprema follows by time reversal (or using analogous argu-
ments).

The rest of this section is devoted to integral representations of Lyapunov expo-
nents that are useful in the study of control flows, see [CK1], [CK2].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE MORSE SPECTRUM OF LINEAR FLOWS ON VECTOR BUNDLES 4375

Consider a linear flow Φ on a vector bundle π : E → S and let λ ∈ ΣLy(Φ) be
given by

λ(e) = λ(Pe) = lim
k→∞

1

tk
log |Φ(t, e)|.

Then, by the Krylov-Bogolyubov construction, there exists a PΦ-invariant measure
µ on ω(Pe), such that for a subsequence, which we denote again by {tk}

lim
k→∞

1

tk

tk∫
0

f(PΦ(τ,Pe))dτ =

∫
fdµ(4.17)

for all f ∈ C(PE). In particular, if Ψ is a smooth linear flow on S × Rm, one can
take for f the function q from (2.3), and hence

λ(e) =

∫
S×Pd−1

q dµ.(4.18)

For an arbitrary linear flow Φ we can use the cohomology F between Φ and the
subflow Ψ|E′ according to Theorem 4.2 to obtain a continuous function r : PE →
R, r = q ◦PF and a PΦ-invariant measure ν = (PF )−1µ, which yields with Propo-
sition 4.1 (iii) for every Lyapunov exponent of Φ an expression of the form

λ(e) =

∫
PE

r dν, e ∈ E.(4.19)

Often one would like to have a more direct representation of the measure and the
integrand. This is possible for flows that satisfy a certain ‘absolute continuity’
condition, compare e.g. the set up for control flows in [CK1]. The result shows
in particular, that every Lyapunov exponent can be obtained as an integral over
regular Lyapunov exponents.

4.11. Theorem. Let Φ be a linear flow on a vector bundle π : E → S, and assume
that there exists a bounded (Lebesgue-)measurable function Q : PE → R such that
for all e ∈ E, t ∈ R

log |Φ(t, e)| − log |e| =
t∫

0

Q(PΦ(τ,Pe))dτ.(4.20)

Then for each e ∈ E there exists a PΦ-invariant probability measure µ = µ(e) with
suppµ ⊂ ω(PE) such that for µ-almost all Pa ∈ PE and all a ∈ P−1(Pa)

λ(a) = lim
t→±∞

1

t
log |Φ(t, a)| = lim

t→±∞

1

t

t∫
0

Q(PΦ(τ,Pa))dτ,(4.21)

(in particular, all limits exist) and

λ(e) =

∫
ω(Pe)

Qdµ =

∫
ω(Pe)

λdµ.(4.22)
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Proof. For every invariant measure µ on PE, the function Q is µ-integrable. Fur-
thermore, for all Lyapunov exponents λ(e), given by

λ(e) = lim
k→∞

1

tk
log |Φ(tk, e)|

it follows from (4.20) that

λ(e) = lim
k→∞

1

tk

tk∫
0

Q(PΦ(τ,Pe))dτ.(4.23)

By Theorem 4.2 there is a cohomology F between Φ and a subflow Ψ|E′ of a smooth
linear flow Ψ on S × Rm. Thus by (4.18) we obtain

λ(e) = λ(Fe) = lim
k→∞

1

tk

tk∫
0

q(PΨ(τ,PFe))dτ =

∫
PE′

qdν,(4.24)

where ν = ν(PFe) is a PΨ-invariant measure on PE′ with supp ν ⊂ ω(PFe). By
Birkhoff’s Ergodic Theorem (see e.g. [NS], Section VI. 5 and 6, or [Ma], Theorem
II.1.1) we have that for ν-almost all Pb ∈ PE′

q̃(Pb) := lim
t→∞

1

t

t∫
0

q(PΨ(τ,Pb))dτ

exists. The function q̃ is ν-integrable and∫
qdν =

∫
q̃dν =

∫
λ(Pb)dν.

Let µ := (PF )−1ν be the corresponding PΦ-invariant measure on PE (see Lemma
4.3), then we obtain using (4.24)

λ(e) =

∫
λ(PF (Pa))µ(dPa).

Now F is a cohomology, hence by Proposition 4.1(iii)

λ(PF (Pa)) = λ(Pa) = lim
t→∞

1

t
|Φ(t, a)|(4.25)

for µ-almost all Pa ∈ PE. This yields for the measure µ

λ(e) =

∫
λ(Pa)dµ,(4.26)

where (4.25) holds for µ-almost all Pa ∈ PE. Again by Birkhoff’s Ergodic Theorem
we have that for µ-almost all Pa ∈ PE

Q̃(Pa) := lim
t→∞

1

t

t∫
0

Q(PΦ(τ,Pa))dτ(4.27)

exists, and ∫
Q̃dµ =

∫
Qdµ.(4.28)

Now (4.25), (4.27) and (4.23) imply (4.21), and (4.22) follows from (4.26) and

(4.28), since Q̃(Pa) = λ(Pa) holds µ-almost everywhere.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE MORSE SPECTRUM OF LINEAR FLOWS ON VECTOR BUNDLES 4377

4.12. Remark. Specializing the set up of Theorem 4.9 to linearized control flows,
we obtain the results of [CK1], Theorem 4.5 (i) and Corollary 4.6 (ii). The proofs
of these statements, given in [CK1] are too simplistic.

5. Relations of the Morse Spectrum to other Spectral Concepts

In this section we discuss the relation of the Morse spectrum to other spectral
concepts, namely the dichotomy spectrum introduced by Sacker and Sell [SS2], a
topological concept introduced by Salamon and Zehnder [SZ] (which we call—for
lack of a better expression, the topological spectrum), and the Oseledeč spectrum
[Os]. A number of interesting connections between the dichotomy spectrum, the
Oseledeč spectrum, and the Lyapunov spectrum have been derived in [JPS]. We
also remark that exponential separation (see Definition 4.8) is equivalent to the
existence of a cocycle such that the linear flow multiplied by this cocycle has an
exponential dichotomy, see Palmer [Pa], Bronstein [Br1], and Theorem 6.30 in [Br2].

Let Φ be a linear flow on a vector bundle π : E → S, and denote

Φλt := exp(−λt)Φt.
The topological spectrum of Φ is defined as (cf. [SZ])

Σtop(Φ) := {λ ∈ R; the zero section Z is not an isolated invariant set of Φλt }.
(5.1)

Thus λ ∈ Σtop if there exists e ∈ E \Z such that exp(−λt)Φ(t, e) is bounded on R.

5.1. Theorem. For a linear flow Φ on a vector bundle π : E → S it holds that

ΣMo(Φ) ⊂ Σtop(Φ).(5.2)

If the induced flow πΦ on the base space S is chain transitive, then equality holds
in (5.2).

Proof. Assume for now that the flow πΦ on S is chain transitive. Then (see The-
orem 3.1) there exists a finest Morse decomposition of PΦ, inducing a Whitney
decomposition

E = V1 ⊕ · · · ⊕ V`(5.3)

into Φ-invariant subbundles. By Corollary 4.10 we have

ΣMo(Φ) =
⋃̀
i=1

[κ∗(PVi), κ(PVi)].(5.4)

Now suppose that λ /∈ Σtop(Φ), i.e. the zero section Z is an isolated invariant set
for the flow Φλt . Then, by [SZ], Theorem 2.7 the unstable set

Eλ,u := {e ∈ E;φ 6= ω∗(e) ⊂ Z}
and the stable set

Eλ,s := {e ∈ E;φ 6= ω(e) ⊂ Z}

project down to an attractor-repeller pair PEλ,u,PEλ,s in PE. (Here the limit sets
are formed with respect to the flow Φλt .) Since (5.3) corresponds to a finest Morse
decomposition of PΦ = PΦλ, we know that for some k ∈ {1 . . . `}

Eλ,u = V1 ⊕ · · · ⊕ Vk , Eλ,s = Vk+1 ⊕ · · · ⊕ V`,
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with an appropriate renumbering of the Vi. Hence, by Lemma 3.3 and (5.4)

ΣMo(Φ) = ΣMo(Φ|Eλ,u) ∪ΣMo(Φ|Eλ,s).
Now, since the stable and the unstable set induce a subbundle decomposition of
E, we can use [SZ], Theorem 2.13 to obtain the existence of an ε > 0 such that
sup ΣLy(Φλ|Eλ,s) < −ε, i.e. sup ΣLy(Φ|Eλ,s) < λ − ε. Hence, by Theorem 4.6, λ
cannot be in ΣMo(Φ|Eλ,s).

Similarly, one sees by time reversal (compare Remark 3.10) that λ cannot be in
ΣMo(Φ|Eλ,u), and thus ΣMo(Φ) ⊂ Σtop(Φ).

Conversely, if λ /∈ ΣMo(Φ), we obtain from (5.3) and (5.4) a decomposition of E
into invariant subbundles Vλ,u and Vλ,s with

inf ΣMo(Φ|Vλ,u) > λ+ ε and sup ΣMo(Φ|Vλ,s) < λ− ε

for some ε > 0. Obviously, PVλ,u is an attractor of PΦ in PE, and PVλ,s its
complementary repeller. And for the limit sets of the flow Φλ it holds that

φ 6= ω∗(e) ⊂ Z for all e ∈ Vλ,u, and

φ 6= ω(e) ⊂ Z for all e ∈ Vλ,s.
Hence, using again [SZ], Theorem 2.7 we obtain that the zero section Z is an isolated
invariant set of Φλ, i.e. λ /∈ Σtop(Φ).

Now we drop the assumption that the flow πΦ on the base space S is chain
transitive. Then, according to Definition 3.2, for each λ ∈ ΣMo(Φ) there exists a
chain recurrent component M ⊂ S of πΦ such that λ ∈ ΣMo(Φ|π−1M). By the
first part of the proof this implies that λ ∈ Σtop(Φ|π−1M), i.e. Z is not an isolated
invariant set of Φλ|π−1M . Thus Z is not an isolated invariant set of Φλ, and hence
λ ∈ Σtop(Φ).

In general, the inclusion (5.2) will be strict, as the following example shows
(compare [SZ], p. 626).

5.2. Example. Let π : E → S be given by E = [0, 1] × R, S = [0, 1]. Consider
the flow induced by

ẋ = x(1− x), ż =

(
1

2
− x
)
z with x ∈ [0, 1], z ∈ R.

The chain recurrent set of the projected flow on [0, 1] × {1} consists of the two
points (x0,Pz0) = (0, 1) and (x1,Pz1) = (1, 1). We obtain by direct calculation{

1

2
,−1

2

}
= ΣMo & Σtop =

[
0,

1

2

]
∪
[
−1

2
, 0

]
.

The difference, of course, comes from the fact that the Morse spectrum is only con-
cerned with the exponential growth behavior over the chain recurrent components
of the base flow, and not with the behavior of the flow between these components.
This example also shows that the Lyapunov spectrum may be strictly contained in
the topological spectrum.

The following results on the relation between the topological spectrum and the
dichotomy spectrum are well known (cf. the references below). For the reader’s
convenience, we provide the required definitions and sketch some of the arguments.

An exponential dichotomy of a linear flow Φ on a vector bundle π : E → S is
given by a continuous, fiber preserving map P : E → E (such that the induced
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maps Pp : Ep → Ep are nontrivial projections for each p ∈ S) and by constants
K ≥ 1, α > 0 with

|ΦtPΦ−1
s | ≤ K exp(−α(t− s)) for s ≤ t,

|Φt(Id− P )Φ−1
s | ≤ K exp(−α(s− t)) for s ≥ t.

(5.5)

The dichotomy spectrum of the linear flow Φ is defined by

Σdic(Φ) = {λ ∈ R; Φλ has no exponential dichotomy}.(5.6)

5.3. Theorem. Let Φ be a linear flow on a vector bundle π : E → S. Then

Σtop(Φ) ⊂ Σdic(Φ).(5.7)

If the induced flow πΦ on the base space S is chain transitive, then equality holds
in (5.7).

Proof. Suppose that λ /∈ Σdic(Φ), i.e. there exists an exponential dichotomy for Φλ

which yields a decomposition

E = Es ⊕Eu

into invariant subbundles Es := PE and Eu = (I − P )E with

|Φλ(t, e)| ≤ K exp(−αt) for e ∈ Es, t ≥ 0, and

|Φλ(t, e)| ≤ K exp(αt) for e ∈ Eu, t ≤ 0.

We have to show that the zero section Z is isolated for Φλ. Assume to the contrary
that there is e ∈ E \ Z and γ > 0 such that

|Φλ(t, e)| ≤ γ for all t ∈ R.(5.8)

Pick ε > 0 and choose τ ≥ 0 with K exp(−ατ) ≤ ε. If v ∈ Es satisfies

|Φλ(t, v)| ≤ γ for t ≤ 0,(5.9)

then

|v| = |Φλ(τ,Φλ(−τ, v))| ≤ K exp(−ατ)γ ≤ εγ.
Since ε was arbitrary, it follows that |v| = 0, i.e. v ∈ Z. Similarly, if w ∈ Eu and

|Φλ(t, w)| ≤ γ for t ≥ 0,(5.10)

then w ∈ Z.
For an arbitrary e ∈ E satisfying (5.8) we write e = v+w, v ∈ Es, w ∈ Eu. By

linearity we obtain

|Φλ(t, w)| ≤ |Φλ(t, e)|+ |Φλ(t, v)|.

Since v ∈ Es, |Φλ(t, v)| is bounded for t ≥ 0, hence it follows from (5.8) that
w ∈ Eu satisfies (5.10) for some γ > 0, and therefore w ∈ Z. Similarly, v ∈ Es
satisfies (5.9) for some γ > 0, and hence v ∈ Z. This yields e ∈ Z, which implies
that Z is isolated for Φλ.

For a chain recurrent base space S, equality in (5.7) is the main result on the
dichotomy spectrum, see e.g. [Sl], Theorem IV. 9 or [SS2].

The proof above follows the ideas of [SS1], Lemma 11(3).

5.4. Remark. It is well known that the inclusion (5.7) may be strict, see e.g. [Ro]
p. 435, also for further references.
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So far we have shown that for a linear flow Φ on a vector bundle π : E → S the
following chain of inequalities holds

ΣLy(Φ) ⊂ ΣMo(Φ) ⊂ Σtop(Φ) ⊂ Σdyn(Φ).(5.11)

In general, the last two inclusions can be strict. A similar result is not known for
the Lyapunov and the Morse spectrum. Denote the boundary points of the Morse
spectrum by

∂ΣMo(Φ) = {κ∗(M), κ(M);M is a chain recurrent component of PΦ}.
Then we have by Theorem 4.6

∂ΣMo(Φ) ⊂ ΣLy(Φ) ⊂ ΣMo(Φ).(5.12)

If we restrict the flow Φ to a chain recurrent component M ⊂ S of πΦ (i.e. in
particular if πΦ is chain recurrent), then we obtain

∂ΣMo(Φ|π−1M) ⊂ ΣLy(Φ|π−1M) ⊂ ΣMo(Φ|π−1M)

= Σtop(Φ|π−1M) = Σdic(Φ|π−1M).(5.13)

Furthermore, it follows from [SS1], Theorem 4 and [JPS], Theorem 2.3 that

∂Σdic(Φ|π−1M) ⊂ ΣLy(Φ|π−1M),(5.14)

where Σdic(Φ|π−1M) consists of finitely many disjoint compact intervals in R, and
∂Σdic(Φ|π−1M) are simply the boundary points of these intervals. Recall from
Theorem 3.6 that ΣMo(Φ|π−1M) consists of finitely many compact intervals in R
(these are exactly the (periodic) Morse exponents over M), but these intervals need
not be disjoint, as the following example shows.

5.5. Example. Let E = U × R2, where U := {u : R → U , measurable} and
U = [−1, 1] ×

[
− 1

4 ,
1
4

]
× [− 1

4 ,
1
4 ] ⊂ R3. Equipped with the weak* topology of

L∞(R,R3) = L1(R,R3)∗, U is a compact metric space. Define a linear flow Φ on
U × R2 by Φt(u, x) = (θtu, ϕ(t, x, u)) where θt : U → U , θtu(·) = u(t + ·) and
ϕ(t, x, u) is the solution of the differential equation

ẋ =

(
1 3

4
3
4 1

)
x+ u1(t)

(
1 0
0 1

)
x+ u2(t)

(
0 1
0 0

)
x+ u3(t)

(
0 0
1 0

)
x

with ϕ(0, x, u) = x. The base flow θ = πΦ on U is chain recurrent (see [CK3],
Lemma 4.5). There are two chain recurrent components of PΦ on U × P1, namely

M1 = U × P
{(

x1

x2

)
∈ R2;x2 = αx1, α ∈

[
−
√

2,− 1√
2

]}
,

M2 = U × P
{(

x1

x2

)
∈ R2;x2 = αx1, α ∈

[
1√
2
,
√

2

]}
.

The Morse spectrum of Φ is

ΣMo(Φ) = ΣMo(M1,Φ) ∪ ΣMo(M2,Φ) =

[
−1,

3

2

]
∪
[

1

2
, 3

]
= ΣLy(Φ),

compare [CK6], Example 3.2.

This example shows that in

∂Σdic(Φ|π−1M) ⊂ ∂ΣMo(Φ|π−1M) ⊂ ΣLy(Φ|π−1M)(5.15)
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also the first inclusion can be strict. The intervals of the dynamical spectrum over
M are simply the disjoint intervals of ΣMo(Φ|π−1M).

Next we turn to the Oseledec̆ spectrum. Let µ be an invariant probability mea-
sure of the base flow πΦ on S. Then there exists Γ ⊂ S with µΓ = 1 such that for
all p ∈ Γ there are numbers λi(p), i = 1 . . . r(p) ≤ d = dimEp and a (measurable)

decomposition Ep = L1
p⊕ · · · ⊕L

r(p)
p such that lim

t→±∞
1
t |Φ(t, e)| = λi(p) iff e ∈ Lip.

If µ is ergodic, then r(p) and λi(p) are constant µ-almost everywhere. The Oseledec̆
spectrum of (Φ, µ) is defined as (see [Os] or [Ma], Sections IV. 10 and 11).

ΣOs(Φ, µ) = {λ ∈ R;λ = λi(p) for some p ∈ Γ, i = 1 . . . r(p)}.(5.16)

Obviously, we have

⋃
µ

ΣOs(Φ, µ) ⊂ ΣLy(Φ) where the union is taken over all πΦ invariant measures.

5.6. Corollary. Let Φ be a linear flow on a vector bundle π : E → S. Then

∂ΣMo(Φ) ⊂
⋃
µ

ΣOs(Φ, µ) , µ πΦ-invariant and ergodic.

Proof. This is a simple corollary of Theorem 4.6: Let M be a chain recurrent
component of PΦ. Then there exists an ergodic, PΦ-invariant measure µ∗(M) such
that lim

t→±∞
1
t log |Φ(t, e∗)| = κ∗(M) for µ∗(M)-almost all Pe∗ ∈ PE. Hence the

marginal µ∗ := Pπ(µ∗(M)) is πΦ-invariant and ergodic, and κ∗(M) ∈ ΣOs(Φ, µ
∗).

A similar argument holds for κ(M), compare also [JPS], p. 23.

Putting things together we obtain

∂Σdic(Φ|π−1M) ⊂ ∂ΣMo(Φ|π−1M) ⊂
⋃

µ erg.

ΣOs(Φ|π−1M,µ)

⊂
⋃

µ stat

ΣOs(Φ|π−1M,µ) ⊂ ΣLy(Φ|π−1M) ⊂ ΣMo(Φ|π−1M).
(5.17)

5.7. Remark. Under certain conditions it can be shown that the Morse spectrum of
Φ agrees with the closure of the Floquet spectrum, i.e. the closure of the periodic
Lyapunov spectrum, see e.g. Section 6. below or [CK6], Section 5. In these cases
the last three inclusions of (5.17) are equalities.

Finally, we analyze the subbundle decompositions of π : E → S that are associ-
ated with the various spectral concepts. We assume for now that the base flow πΦ
is chain recurrent, i.e. we work on a component of πΦ.

The Morse spectrum is constructed in such a way that the Morse sets M1, . . . ,
M`, ` ≤ d = dimEp, of PΦ correspond to the spectral intervals [κ∗(Mi), κ(Mi)],
i = 1 . . . `, and hence ΣMo(Φ) is associated with a continuous Whitney decomposi-
tion E = V1⊕· · ·⊕V`, such that {PV1 . . .PV`} form the finest Morse decomposition
of PΦ, see Theorem 3.1.

The decomposition of E into stable and unstable subbundles that is associated
with the topological spectrum (cf. [SZ], Theorem 2.7, and the proof of Theorem 5.1
above) projects down to attractor—repeller pairs in PE. Hence this decomposition
is coarser than the one induced by the finest Morse decomposition. The same holds
true for the invariant subbundles of an exponential dichotomy, compare e.g. [SS2].
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In fact, it is easy to see that the following holds: LetMj , i ∈ I, be Morse sets of PΦ

such that R :=
⋃
j∈I

ΣMo(Mj ,Φ) is a (maximal) interval of the set
⋃̀
i=1

ΣMo(Mi,Φ).

Then R is an interval of the topological and the dichotomy spectrum, and
⊕
j∈I
Vj

is the corresponding spectral bundle. Example 5.5 shows that the bundle decom-
position of the Morse spectrum can be strictly finer that the one induced by the
topological (or the dichotomy) spectrum. It is this property of the Morse spectrum
that allows the characterization of stabilizability of control systems, see e.g. [CK7].

If the base flow πΦ on S is not chain recurrent, then the topological spectrum is
still associated with attractor-repeller pairs on PE, (cf. [SZ], Theorem 2.7), and the
dichotomy spectrum corresponds to subbundle decomposition via the projectors
of exponential dichotomies, but the decompositions corresponding to the Morse
spectrum are not defined globally.

The Oseledec̆ spectrum is defined for πΦ-invariant measures µ on S. Hence, for
a given µ, the associated (measurable) bundle decomposition can be finer than the
one induced by the Morse spectrum. One of the main results of [JPS] shows that
for all ergodic µ the Oseledec̆ spaces are contained in the subbundles induced by
the dichotomy spectrum. As observed by Latushkin in [La] this and Bronstein’s
result Theorem 6.30 in [Br2] on the relation between exponential separation and
exponential dichotomy imply that for an ergodic invariant measure ν on the base
space the Oseledec̆ bundles are contained in the Morse spectral bundles. Of course,
all statements on the Oseledec̆ spaces hold with µ-probability one.

The following example (the linear oscillator) shows that the number of measur-
able subbundles obtained from Oseledec̆’ theorem may be strictly greater than the
number of Morse sets and hence of the corresponding subbundles.

5.8. Example. Consider the family of matrices(
0 1
−1 0

)
+ u(t)

(
0 0
1 0

)
with u(t) ∈ U = [−3, 3].

The projected system has one chain control set E = P1, hence one interval of the
Morse spectrum ΣMo = ΣMo(E). Consider the ergodic invariant measure δu0 on
U , the Dirac measure at the point u0 ≡ 2. The Oseledec̆ spectrum consists of two
points ΣOs(δu0) = {−1, 1} with corresponding Oseledec̆ spaces

V1 = {
(

x
−x

)
;x ∈ R} and V2 = {

(
x

x

)
;x ∈ R}.

6. The Lyapunov Spectrum of Smooth Vectorfields

with Hyperbolic Projective Flow

The Morse spectrum of a flow allows the characterization of the Lyapunov spec-
trum if all (ε, T )-chains for sufficiently small ε and sufficiently large T can be closed.
In fact, Corollary 4.10. implies that closing of the appropriate periodic chains is
sufficient to yield that the Floquet spectrum and the Morse spectrum agree. One
tool to find trajectories close to (ε, T )-chains is Bowen’s Shadowing Lemma (see e.g.
[FS], or [Ak]). In this section we will use a strengthened version of the Shadowing
Lemma to analyze the Lyapunov spectrum of smooth vector fields with hyperbolic
projective flow. For control flows associated with nonlinear control systems (see
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e.g. [CK5]), local accessibility provides another tool to find shadowing orbits close
to (ε, T )-chains, see [CK6] for the bilinear case.

The setup for this section is as follows: Let M be a compact, Riemannian C∞-
manifold of dimension d < ∞, and let X be a C∞-vectorfield on M . We denote
by Φ the flow on M generated by X , by TΦ the linearized flow on the tangent
bundle TM , and by PΦ the induced flow on the projective bundle PM . Define
the Morse spectrum and the Lyapunov spectrum of Φ as in Definition 3.2, and in
(3.9), respectively. (Note that in Section 3. the linear flow on a vector bundle
was denoted by Φ, which corresponds to TΦ in the current setup.) The Floquet
spectrum of Φ is defined as

ΣF`(Φ) := {λ(γ); there exists a trajectory TΦ(t, e) in TM such

that PΦ(·, e) =: γ is periodic in PM , and λ(γ) := lim
t→∞

1

t
log |TΦ(t, e)|}.

Recall that a flow Ψ generated by a C∞-vector field on a compact, Riemannian
manifold M is called hyperbolic on a compact invariant set Λ ⊂M , if the tangent
flow TΨ on TM leaves invariant a continuous splitting TΛM = Es⊕Ec⊕Eu, such
that for some 0 < α < 1 and some adapted Riemannian metric | · |

|TΨ(t, w)| > α−t|w| for w ∈ Eu and t > 0,

|TΨ(t, v)| < αt|v| for v ∈ Es and t > 0,

Ec is the linear span of the vector field.
The following theorem is the main result of this section.

6.1. Theorem. Let Φ be the flow generated by the vector field X on M . Let
T ⊂ PM be a compact PΦ-invariant set in PM and assume that PΦ is hyperbolic
on T . Then

ΣMo(T ,Φ) ⊂ c`ΣF`(Φ) ⊂ c`ΣLy(Φ).(6.1)

For the proof of Theorem 6.1 we need a version of the (continuous time) Shad-
owing Lemma. Recall that the continuous time version (in contrast to the case of
iterations of diffeomorphisms) involves a reparametrization of time, and we need
that this reparametrization is arbitrarily close to the identity. In the following we
indicate how the proof given in [FS] has to be modified to yield an appropriate
version for our purposes.

First, we recall some notions. For a flow Ψ on a Riemannian manifold M as above
we write Ψ(t, y) = y · t. The set y · R = {y · t; t ∈ R} for y ∈ M is called an orbit.
A reparametrization of an orbit is an orientation preserving homeomorphism of R,
fixing the origin. An (ε, T )-chain given by n ∈ N, T0 . . . Tn−1 ≥ T, x0 . . . xn ∈ N
will be written in the form

x0 ∗ t, t ∈
[

0,
n−1∑
i=0

Ti

]
, where

x0 ∗ t = xi ·

t− i−1∑
j=0

Tj

 for
i−1∑
j=0

Tj ≤ t <
i∑

j=0

Tj ,

analogously for (ε, T )-chains with infinitely many jumps. An orbit y · R is said to
δ-trace an infinite (ε, T )-chain x0 ∗R if there exists a reparametrization g such that
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d(x0∗t, y ·g(t)) < δ for all t ∈ R, and analogously on subintervals of R by restricting
g.

Our version of the Shadowing Lemma is as follows (cf. [FS], Theorem 4.1.).

6.2. Proposition. Let Λ be a hyperbolic compact invariant set of the flow Ψ on
M . Then for all α > 0, all ε > 0 small enough, all N > 2 and all T ≥ M the
following holds: For each periodic (ε, T )-chain x0 ∗ [0, τ0] in Λ there exists a τ1-
periodic trajectory x1 · [0, τ1] and a parametrization g such that x1 · [0, τ1] α-traces
x0 ∗ [0, τ0] via g and furthermore

|g(t)− t| < 1

N
(2t+ 3) for t ∈ [0, τ0],(6.2)

|g(τ0)− τ1| <
1

2N
.(6.3)

The proof of Proposition 6.2 will be established using two lemmas.

6.3. Lemma. Let Λ be a hyperbolic compact invariant set of the flow Ψ. Then
there exists a compact neighborhood U(Λ) whose maximal compact invariant subset
Λ′ is hyperbolic, and for each δ > 0 there is an ε > 0 such that each (ε, 1)-chain
x0 ∗ [a, b] in Λ (with 0 ∈ [a, b]) is δ-traced by some y ∈ Λ′. Here for each N ∈ N
one can choose y and the parametrization h such that for all t ∈ [a, b](

1− 1

2N

)
t+

1

2N
a− 1

N
< h(t) <

(
1 +

1

2N

)
t− 1

2N
a+

1

N
.

Proof. The proof follows the one of Lemma 3.1. in [FS], where N = 2 was used.
On p. 29, line −9 in [FS] the constant γ must be chosen such that 0 < γ < 1

N .
Then one obtains for the parametrization g(t), t ∈ [0, rM ] (cf. [FS], pp. 31–32):

|g(t)− t| ≤ (k + 1)γ ≤ t

2N
+

1

N
for t ∈ [kM, (k + 1)M ], using M > 2.

Thus (
1− 1

2N

)
t− 1

N
< g(t) <

(
1 +

1

2N

)
t+

1

N
for t ∈ [0, rM ].

For a chain x0 ∗ [a, b], δ-trace the chain (x0 ∗ a) ∗ [0, b− a] with initial point x0 ∗ a
by {y · g(t), t ∈ [0, b − a]} for some y ∈ Λ′. Extend g by g(t) := t for t < 0.
Then the given chain x0 ∗ [a, b] can be δ-traced by {y · g(−a) · h(t), t ∈ [a, b]} with
h(t) := g(t− a)− g(−a). We find

h(t) = g(t− a)− g(−a)

< (1 +
1

2N
)(t− a) +

1

N
+ a

= (1 +
1

2N
)t− 1

2N
a+

1

N
.

The estimate from below follows similarly.

6.4. Lemma. For each δ > 0 there is an ε > 0 such that each infinite (ε, 1)-chain
in Λ is δ-traced by some y ∈ Λ′. Here for each N ∈ N one can choose y and the
parametrization g such that

|g(t)− t| < 1

N
(2t+ 3) for t ∈ R, and

g(N) >
1

2
.
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Proof. This result follows as in the proof of [FS], Lemma 3.4. using the estimates
from Lemma 6.3: The parametrizations gi, constructed in [FS] to δ2-trace xi∗[−i, i],
i ≥ N can be chosen to satisfy for N > 2

gi(N) >

(
1− 1

2N

)
N − N

2N
− 1

N
=

2N2 − 2N − 2

2N
>

1

2
,

and this property is inherited by the parametrization g, constructed from the gi.
Furthermore, for t ∈ (i, i+ 1] we obtain

|gi+1(t)− t| < 1

2N
t− 1

2N
(−i− 1) +

1

N

<
1

2N
t+

1

2N
i+

1

2N
+

1

N

<
1

N
(2t+ 3),

which proves the corresponding statement for the parametrization g.

6.5. Proof of Proposition 6.2. Choose N > 2 and τ := 1
2N . Then Lemma 3.3 in

[FS] guarantees that there exists δ > 0 such that, if x, y ∈ Λ are g, h reparametriza-
tions of x ·R, and y ·R respectively, with d(x · g(t), y · h(t)) < δ for all t ∈ R, then
x = y · s for some |s| < τ .

Given α > 0, let δ1 := min{ δ2 , α} and let ε be the corresponding number from
Lemma 6.4. Take a periodic (ε, T )-chain x0 ∗ [0, τ0] in Λ with T ≥ N and continue
it τ0-periodically in both directions to get an infinite (ε, T )-chain through x0. Let
{x1 · g(t); t ∈ R} δ1-trace the chain x0 ∗ R with parametrization g satisfying

|g(t)− t| < 1

N
(2t+ 3) for t ∈ R, and g(N) >

1

2

according to Lemma 6.4, which shows (6.2). Since x0 ∗ τ0 = x0, the reparametriza-
tion

h(t) := g(τ0 − t)− g(τ0)

has the property that {(x1 · g(τ0)) · h(t); t ∈ R} also δ1-traces x0 ∗ R. Hence

d((x1 · g(τ0)) · h(t), x1 · g(t)) < δ for all t ∈ R.

Now, Lemma 3.3 in [FS] implies as above that there exists s with |s| < τ ≤ 1
2 and

x1 = (x1 · g(τ0)) · s. Since g(τ0) ≥ g(N) > 1
2 , we obtain g(τ0) + s 6= 0, and hence x1

is a τ1-periodic point with τ1 := g(τ0) + s, |s| < τ = 1
2N . This proves (6.3).

6.6. Proof of Theorem 6.1. It suffices to show that for every β > 0, all ε > 0 small
enough, all N ∈ N large enough, and every periodic (ε, T )-chain ζ = x0 ∗ [0, τ0] in
T with T > N , there exists a periodic trajectory x1 · R of PΦ in PM with

|λ(ζ) − λ(x1)| < β.
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Since the flow PΦ is smooth on the Riemannian manifold PM there exists a con-
tinuous function q : PM → R (see e.g. [Ca], Lemma 3.3), such that

λ(ζ) =

(
n−1∑
i=0

Ti

)−1 n−1∑
i=0

(log |Φ(Ti, xi)| − log |xi|)

=

(
n−1∑
i=0

Ti

)−1 n−1∑
i=0

Ti∫
0

q(PΦ(t, xi))dt

=:
1

τ0

τ0∫
0

q(x0 ∗ t)dt.

We apply Proposition 6.2 to the chain ζ on PM and obtain for all α > 0, all N > 2
a τ1-periodic solution x1 · t, t ∈ R of PΦ with (6.2) and (6.3). Furthermore,

|τ0 − τ1| ≤ |τ0 − g(τ0)|+ |g(τ0)− τ1|

<
1

N
(2τ0 + 3) +

1

2N

<
3

N
τ0.

(6.4)

Since q is continuous on the compact space PM, |q| is bounded, say by K > 0. Now
pick β > 0. Choosing α > 0 small enough, we obtain by continuity of q and by
Proposition 6.2 ∣∣∣∣∣∣

τ0∫
0

q(x0 ∗ t)dt−
τ0∫

0

q(x1 · t)dt

∣∣∣∣∣∣ < 1

3
τ0β,

and therefore

|λ(ζ) − λ(x1)| = | 1
τ0

τ0∫
0

q(x0 ∗ t)dt−
1

τ1

τ1∫
0

q(x1 · t)dt|

≤ | 1
τ0

τ0∫
0

q(x0 ∗ t)dt−
1

τ0

τ0∫
0

q(x1 · t)dt|

+ | 1
τ0

τ0∫
0

q(x1 · t)dt−
1

τ0

τ1∫
0

q(x1 · t)dt|

+ | 1
τ0

τ1∫
0

q(x1 · t)dt−
1

τ1

τ1∫
0

q(x1 · t)dt|

≤ β

3
+
|τ1 − τ0|

τ0
·K +

|τ1 − τ0|
τ0 · τ1

· τ1K.

By (6.4) we have |τ1 − τ0|/τ0 < 3
N , and hence for N large enough we obtain

|λ(ζ) − λ(x1)| ≤ β

3
+
β

3
+
β

3
= β.

This concludes the proof of Theorem 6.1.
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The following result is an easy consequence of Theorems 6.1, 3.7 and Corollary
4.10.

6.7. Corollary. Let Φ be the flow generated by a C∞ vector field on M . If all
chain recurrent components of PΦ on PM are hyperbolic, then

c`ΣF`(Φ) = c`ΣLy(Φ) = c`ΣMo(Φ).

Note, that if Φ has a finest Morse decomposition on M , then by Theorems 3.1 and
3.6 we have c`ΣMo(Φ) = ΣMo(Φ).

6.8. Remark. The hyperbolicity conditions for PΦ on PM and for Φ on M are not
related. This is easily seen by considering linear time invariant differential equa-
tions. Here hyperbolicity on Rd means that there is no eigenvalue with vanishing
real part, while hyperbolicity in projective space means that the real parts of the
eigenvalues are different.

6.9. Remark. We are only aware of one alternative proof for the shadowing lemma
in continuous time, due to Coomes, Kocak, and Palmer [CKP]. The statement
is given for equations in Rn only, but avoids a reparametrization of time and the
proof is more geometrical. It can almost immediately be applied to yield a proof
of Theorem 6.1. One only has to observe that—by uniqueness—the shadowing
property for arbitrary chains implies that periodic chains are traced by periodic
trajectories.
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