The fixed-point property for simply connected plane continua
HTML articles powered by AMS MathViewer
- by Charles L. Hagopian
- Trans. Amer. Math. Soc. 348 (1996), 4525-4548
- DOI: https://doi.org/10.1090/S0002-9947-96-01582-6
- PDF | Request permission
Abstract:
We answer a question of R. Mańka by proving that every simply-connected plane continuum has the fixed-point property. It follows that an arcwise-connected plane continuum has the fixed-point property if and only if its fundamental group is trivial. Let $M$ be a plane continuum with the property that every simple closed curve in $M$ bounds a disk in $M$. Then every map of $M$ that sends each arc component into itself has a fixed point. Hence every deformation of $M$ has a fixed point. These results are corollaries to the following general theorem. If $M$ is a plane continuum, $\mathcal {D}$ is a decomposition of $M$, and each element of $\mathcal {D}$ is simply connected, then every map of $M$ that sends each element of $\mathcal {D}$ into itself has a fixed point.References
- Vladimir N. Akis, Fixed point theorems and almost continuity, Fund. Math. 121 (1984), no. 2, 133–142. MR 765329, DOI 10.4064/fm-121-2-133-142
- W. L. Ayres, Some generalizations of the Scherer fixed-point theorem, Fund. Math. 16 (1930), 332–336.
- Harold Bell, On fixed point properties of plane continua, Trans. Amer. Math. Soc. 128 (1967), 539–548. MR 214036, DOI 10.1090/S0002-9947-1967-0214036-2
- Harold Bell, A fixed point theorem for plane homeomorphisms, Fund. Math. 100 (1978), no. 2, 119–128. MR 500879, DOI 10.4064/fm-100-2-119-128
- David P. Bellamy, A tree-like continuum without the fixed-point property, Houston J. Math. 6 (1980), no. 1, 1–13. MR 575909
- R. H. Bing, The elusive fixed point property, Amer. Math. Monthly 76 (1969), 119–132. MR 236908, DOI 10.2307/2317258
- —, Commentary on Problem 107, The Scottish Book, Birkhäuser, Boston, MA, 1981, pp. 190–192.
- K. Borsuk, Einige Satze uber stetige Streckenbilder, Fund. Math. 18 (1932), 198–213.
- —, Sur un continu acyclique qui se laisse transformer topologiquement en liu-même sans points invariants, Fund. Math. 24 (1935), 51–58.
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- L. E. J. Brouwer, Über Abbildung von Mannigfaltigkeiten, Math. Ann. 71 (1912), 97–115.
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Charles L. Hagopian, A fixed point theorem for plane continua, Bull. Amer. Math. Soc. 77 (1971), 351–354. MR 273591, DOI 10.1090/S0002-9904-1971-12690-3
- Charles L. Hagopian, Another fixed point theorem for plane continua, Proc. Amer. Math. Soc. 31 (1972), 627–628. MR 286093, DOI 10.1090/S0002-9939-1972-0286093-6
- Charles L. Hagopian, Mapping theorems for plane continua, Topology Proc. 3 (1978), no. 1, 117–122 (1979). MR 540483
- Charles L. Hagopian, Uniquely arcwise connected plane continua have the fixed-point property, Trans. Amer. Math. Soc. 248 (1979), no. 1, 85–104. MR 521694, DOI 10.1090/S0002-9947-1979-0521694-X
- Charles L. Hagopian, Fixed points of arc-component-preserving maps, Trans. Amer. Math. Soc. 306 (1988), no. 1, 411–420. MR 927698, DOI 10.1090/S0002-9947-1988-0927698-2
- Charles L. Hagopian, Fixed-point problems in continuum theory, Continuum theory and dynamical systems (Arcata, CA, 1989) Contemp. Math., vol. 117, Amer. Math. Soc., Providence, RI, 1991, pp. 79–86. MR 1112805, DOI 10.1090/conm/117/1112805
- Charles L. Hagopian, Fixed points of plane continua, Rocky Mountain J. Math. 23 (1993), no. 1, 119–186. MR 1212735, DOI 10.1216/rmjm/1181072615
- O. H. Hamilton, Fixed points under transformations of continua which are not connected im kleinen, Trans. Amer. Math. Soc. 44 (1938), 18–24.
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- S. D. Iliadis, Positions of continua on the plane, and fixed points, Vestnik Moskov. Univ. Ser. I Mat. Meh. 25 (1970), no. 4, 66–70 (Russian, with English summary). MR 0287522
- W. J. Trjitzinsky, General theory of singular integral equations with real kernels, Trans. Amer. Math. Soc. 46 (1939), 202–279. MR 92, DOI 10.1090/S0002-9947-1939-0000092-6
- J. Krasinkiewicz, Concerning the boundaries of plane continua and the fixed point property, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 427–431 (English, with Russian summary). MR 336716
- R. Mańka, Some problems concerning fixed points, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 21 (1978), 429–435. Also see Contemp. Math. 117 (1991), 181 (Question 4.9a).
- M. M. Marsh, $\epsilon$-mappings onto a tree and the fixed point property, Topology Proc. 14 (1989), no. 2, 265–277. MR 1107727
- Piotr Minc, A fixed point theorem for weakly chainable plane continua, Trans. Amer. Math. Soc. 317 (1990), no. 1, 303–312. MR 968887, DOI 10.1090/S0002-9947-1990-0968887-X
- Piotr Minc, A tree-like continuum admitting fixed point free maps with arbitrarily small trajectories, Topology Appl. 46 (1992), no. 2, 99–106. MR 1184108, DOI 10.1016/0166-8641(92)90124-I
- —, A periodic point free homeomorphism of a tree-like continuum, Trans. Amer. Math. Soc. 348 (1996), 1487–1519.
- R. L. Moore, Foundations of point set theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR 0150722
- Lex G. Oversteegen and James T. Rogers Jr., An inverse limit description of an atriodic tree-like continuum and an induced map without a fixed point, Houston J. Math. 6 (1980), no. 4, 549–564. MR 621749
- Lex G. Oversteegen and James T. Rogers Jr., Fixed-point-free maps on tree-like continua, Topology Appl. 13 (1982), no. 1, 85–95. MR 637430, DOI 10.1016/0166-8641(82)90010-4
- K. Sieklucki, On a class of plane acyclic continua with the fixed point property, Fund. Math. 63 (1968), 257–278. MR 240794, DOI 10.4064/fm-63-3-257-278
- J. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), 249–263. MR 117710, DOI 10.4064/fm-47-3-249-263
- I. Verčenko, Sur les continus acycliques transformés en eux-mêmes d’une manière continue sans points invariants, Rec. Math. [Mat. Sbornik] (N.S.) 8 (50) (1940), 295–306 (Russian. French summary). Reviewed by W. Hurewicz, Math. Rev. 2 (1941), 324.
- G. S. Young, Fixed-point theorems for arcwise connected continua, Proc. Amer. Math. Soc. 11 (1960), 880–884. MR 117711, DOI 10.1090/S0002-9939-1960-0117711-2
Bibliographic Information
- Charles L. Hagopian
- Affiliation: Department of Mathematics, California State University, Sacramento, California 95819-6051
- Email: hagopian@csus.edu
- Additional Notes: The CSUS Research, Scholarship, and Creative Activities Program supported this work. Piotr Minc proofread the original manuscript and made several comments that led to its improvement.
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 4525-4548
- MSC (1991): Primary 54F15, 54H25; Secondary 55M20, 57N05
- DOI: https://doi.org/10.1090/S0002-9947-96-01582-6
- MathSciNet review: 1344207