Covering the integers by arithmetic sequences. II
HTML articles powered by AMS MathViewer
- by Zhi-Wei Sun
- Trans. Amer. Math. Soc. 348 (1996), 4279-4320
- DOI: https://doi.org/10.1090/S0002-9947-96-01674-1
- PDF | Request permission
Abstract:
Let $A= \{a_{s}+n_{s}\mathbb {Z}\}^{k}_{s=1}$ ($n_{1} \leqslant \cdots \leqslant n_{k})$ be a system of arithmetic sequences where $a_{1}, \cdots ,a_{k}\in \mathbb {Z}$ and $n_{1},\cdots ,n_{k}\in \mathbb {Z}^{+}$. For $m\in \mathbb {Z}^{+}$ system $A$ will be called an (exact) $m$-cover of $\mathbb {Z}$ if every integer is covered by $A$ at least (exactly) $m$ times. In this paper we reveal further connections between the common differences in an (exact) $m$-cover of $\mathbb {Z}$ and Egyptian fractions. Here are some typical results for those $m$-covers $A$ of $\mathbb {Z}$: (a) For any $m_{1},\cdots ,m_{k}\in \mathbb {Z}^{+}$ there are at least $m$ positive integers in the form $\Sigma _{s\in I} m_{s}/n_{s}$ where $I \subseteq \{1,\cdots ,k\}$. (b) When $n_{k-l}<n_{k-l+1}= \cdots =n_{k}$ ($0<l<k)$, either $l \geqslant n_{k}/n_{k-l}$ or $\Sigma ^{k-l}_{s=1}1/n_{s} \geqslant m$, and for each positive integer $\lambda <n_{k}/n_{k-l}$ the binomial coefficient $\binom l{ \lambda }$ can be written as the sum of some denominators $>1$ of the rationals $\Sigma _{s\in I}1/n_{s}- \lambda /n_{k}, I \subseteq \{1,\cdots ,k\}$ if $A$ forms an exact $m$-cover of $\mathbb {Z}$. (c) If $\{a_{s}+n_{s}\mathbb {Z}\}^{k}_{\substack {s=1\ s\not =t}}$ is not an $m$-cover of $\mathbb {Z}$, then $\Sigma _{s\in I}1/n_{s}, I \subseteq \{1,\cdots ,k\}\setminus \{t\}$ have at least $n_{t}$ distinct fractional parts and for each $r=0,1,\cdots ,n_{t}-1$ there exist $I_{1},I_{2} \subseteq \{1,\cdots ,k\}\setminus \{t\}$ such that $r/n_{t} \equiv \Sigma _{s\in I_{1}}1/n_{s}-\Sigma _{s\in I_{2}}1/n_{s}$ (mod 1). If $A$ forms an exact $m$-cover of $\mathbb {Z}$ with $m=1$ or $n_{1}< \cdots <n_{k-l}<n_{k-l+1}= \cdots =n_{k}$ ($l>0$) then for every $t=1, \cdots ,k$ and $r=0,1,\cdots ,n_{t}-1$ there is an $I \subseteq \{1,\cdots ,k\}$ such that $\Sigma _{s\in I}1/n_{s} \equiv r/n_{t}$ (mod 1).References
- H. M. Srivastava, Sums of certain series of the Riemann zeta function, J. Math. Anal. Appl. 134 (1988), no. 1, 129–140. MR 958860, DOI 10.1016/0022-247X(88)90013-3
- Nechemia Burshtein, On natural exactly covering systems of congruences having moduli occurring at most $M$ times, Discrete Math. 14 (1976), no. 3, 205–214. MR 399035, DOI 10.1016/0012-365X(76)90034-0
- Y. G. Chen and Š. Porubský, Remarks on systems of congruence classes, Acta Arith. 71 (1995), 1–10.
- Cristian Cobeli, Marian Vâjâitu, and Alexandru Zaharescu, Graham’s conjecture under Riemann hypothesis, J. Number Theory 31 (1989), no. 1, 80–87. MR 978101, DOI 10.1016/0022-314X(89)90053-X
- R. B. Crittenden and C. L. Vanden Eynden, Any $n$ arithmetic progressions covering the first $2^{n}$ integers cover all integers, Proc. Amer. Math. Soc. 24 (1970), 475–481. MR 258719, DOI 10.1090/S0002-9939-1970-0258719-2
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Pál Erdős, Remarks on number theory. IV. Extremal problems in number theory. I, Mat. Lapok 13 (1962), 228–255 (Hungarian, with English and Russian summaries). MR 195822
- Richard K. Guy, Unsolved problems in number theory, Problem Books in Mathematics, Springer-Verlag, New York-Berlin, 1981. MR 656313
- Nathan Jacobson, Basic algebra. I, 2nd ed., W. H. Freeman and Company, New York, 1985. MR 780184
- C. E. Krukenberg, Covering sets of the integers, Ph. D. thesis, University of Illinois (1971).
- Morris Newman, Roots of unity and covering sets, Math. Ann. 191 (1971), 279–282. MR 286763, DOI 10.1007/BF01350330
- Štefan Porubský, On $m$ times covering systems of congruences, Acta Arith. 29 (1976), no. 2, 159–169. MR 399033, DOI 10.4064/aa-29-2-159-169
- Štefan Porubský, Results and problems on covering systems of residue classes, Mitt. Math. Sem. Giessen 150 (1981), 85. MR 638657
- A. Schinzel, Reducibility of polynomials and covering systems of congruences, Acta Arith. 13 (1967/68), 91–101. MR 219515, DOI 10.4064/aa-13-1-91-101
- R. J. Simpson, Regular coverings of the integers by arithmetic progressions, Acta Arith. 45 (1985), no. 2, 145–152. MR 797258, DOI 10.4064/aa-45-2-145-152
- R. J. Simpson, Exact coverings of the integers by arithmetic progressions, Discrete Math. 59 (1986), no. 1-2, 181–190. MR 837965, DOI 10.1016/0012-365X(86)90079-8
- Zhi Wei Sun, Finite coverings of groups, Fund. Math. 134 (1990), no. 1, 37–53. MR 1071259, DOI 10.4064/fm-134-1-37-53
- Z. W. Sun, A theorem concerning systems of residue classes, Acta Math. Univ. Comenian. (N.S.) 60 (1991), no. 1, 123–131. MR 1120598
- Z. W. Sun, An improvement to the Znám-Newman result, Chinese Quart. J. Math. 6 (3) (1991), 90–96.
- Zhi Wei Sun, On exactly $m$ times covers, Israel J. Math. 77 (1992), no. 3, 345–348. MR 1194800, DOI 10.1007/BF02773696
- Z. W. Sun, Covering the integers by arithmetic sequences, Acta Arith. 72 (1995), 109–129.
- Z. W. Sun and Z. H. Sun, Some results on covering systems of congruences, J. Southwest-China Teachers Univ. (1) (1987), 10–15. Zbl. M. 749.11018.
- J. D. Swift, Sets of covering congruences, Bull. Amer. Math. Soc. 60 (1954), 390.
- M. Szegedy, The solution of Graham’s greatest common divisor problem, Combinatorica 6 (1986), no. 1, 67–71. MR 856645, DOI 10.1007/BF02579410
- Ming Zhi Zhang, A note on covering systems of residue classes, Sichuan Daxue Xuebao 26 (1989), no. Special Issue, 185–188 (Chinese, with English summary). MR 1059702
- Ming Zhi Zhang, Irreducible systems of residue classes that cover every integer exactly $m$ times, Sichuan Daxue Xuebao 28 (1991), no. 4, 403–408 (Chinese, with English summary). MR 1148826
- Štefan Znám, On Mycielski’s problem on systems of arithmetical progressions, Colloq. Math. 15 (1966), 201–204. MR 200235, DOI 10.4064/cm-15-2-201-204
- Š. Znám, On exactly covering systems of arithmetic sequences, Number Theory (Colloq., János Bolyai Math. Soc., Debrecen, 1968) North-Holland, Amsterdam, 1970, pp. 221–225. MR 0272705
- Eugène Ehrhart, Sommation de polynomes mixtes, C. R. Acad. Sci. Paris Sér. A-B 275 (1972), A1031–A1034 (French). MR 364074
Bibliographic Information
- Zhi-Wei Sun
- Affiliation: Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China; Dipartimento di Matematica, Università degli Studi di Trento, I-38050 Povo (Trento), Italy
- MR Author ID: 254588
- Email: zhiwei@science.unitn.it
- Received by editor(s): June 7, 1994
- Received by editor(s) in revised form: November 10, 1995
- Additional Notes: This research is supported by the National Natural Science Foundation of P. R. China.
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 4279-4320
- MSC (1991): Primary 11B25; Secondary 11A07, 11B75, 11D68
- DOI: https://doi.org/10.1090/S0002-9947-96-01674-1
- MathSciNet review: 1360231