Curvature invariants, differential operators and local homogeneity
HTML articles powered by AMS MathViewer
- by Friedbert Prüfer, Franco Tricerri and Lieven Vanhecke
- Trans. Amer. Math. Soc. 348 (1996), 4643-4652
- DOI: https://doi.org/10.1090/S0002-9947-96-01686-8
- PDF | Request permission
Abstract:
We first prove that a Riemannian manifold $(M,g)$ with globally constant additive Weyl invariants is locally homogeneous. Then we use this result to show that a manifold $(M,g)$ whose Laplacian commutes with all invariant differential operators is a locally homogeneous space.References
- Marcel Berger, Paul Gauduchon, and Edmond Mazet, Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin-New York, 1971 (French). MR 0282313, DOI 10.1007/BFb0064643
- Jürgen Berndt, Franco Tricerri, and Lieven Vanhecke, Geometry of generalized Heisenberg groups and their Damek-Ricci harmonic extensions, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), no. 5, 471–476 (English, with English and French summaries). MR 1267829
- J. Berndt, F. Tricerri and L. Vanhecke, Generalized Heisenberg groups and Damek-Ricci harmonic spaces, Lecture Notes in Math. 1598, Springer-Verlag, Berlin, Heidelberg, New York, 1995.
- Jürgen Berndt and Lieven Vanhecke, Two natural generalizations of locally symmetric spaces, Differential Geom. Appl. 2 (1992), no. 1, 57–80. MR 1244456, DOI 10.1016/0926-2245(92)90009-C
- Ewa Damek and Fulvio Ricci, A class of nonsymmetric harmonic Riemannian spaces, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 139–142. MR 1142682, DOI 10.1090/S0273-0979-1992-00293-8
- J. E. D’Atri and H. K. Nickerson, Divergence-preserving geodesic symmetries, J. Differential Geometry 3 (1969), 467–476. MR 262969
- T. J. Willmore and A. Gray, Mean-value theorems for Riemannian manifolds, Proc. Roy. Soc. Edinburgh Sect. A 92 (1982), no. 3-4, 343–364. MR 677493, DOI 10.1017/S0308210500032571
- Mikhael Gromov, Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 9, Springer-Verlag, Berlin, 1986. MR 864505, DOI 10.1007/978-3-662-02267-2
- O. Kowalski, Spaces with volume-preserving symmetries and related classes of Riemannian manifolds, Rend. Sem. Mat. Univ. Politec. Torino, Fascicolo Speciale Settembre, 1983, pp. 223-232.
- O. Kowalski, Counterexample to the “second Singer’s theorem”, Ann. Global Anal. Geom. 8 (1990), no. 2, 211–214. MR 1088512, DOI 10.1007/BF00128004
- O. Kowalski, F. Prüfer and L. Vanhecke, D’Atri spaces, preprint, 1995.
- Oldřich Kowalski and Lieven Vanhecke, Ball-homogeneous and disk-homogeneous Riemannian manifolds, Math. Z. 180 (1982), no. 4, 429–444. MR 666999, DOI 10.1007/BF01214716
- L. Nicolodi and F. Tricerri, On two theorems of I. M. Singer about homogeneous spaces, Ann. Global Anal. Geom. 8 (1990), no. 2, 193–209. MR 1088511, DOI 10.1007/BF00128003
- Valentin Poénaru, Singularités $C^{\infty }$ en présence de symétrie, Lecture Notes in Mathematics, Vol. 510, Springer-Verlag, Berlin-New York, 1976. En particulier en présence de la symétrie d’un groupe de Lie compact. MR 0440597, DOI 10.1007/BFb0079196
- Claudio Procesi and Gerald Schwarz, Inequalities defining orbit spaces, Invent. Math. 81 (1985), no. 3, 539–554. MR 807071, DOI 10.1007/BF01388587
- Friedbert Prüfer, On compact Riemannian manifolds with volume-preserving symmetries, Ann. Global Anal. Geom. 7 (1989), no. 2, 133–140. MR 1032331, DOI 10.1007/BF00127863
- I. M. Singer, Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960), 685–697. MR 131248, DOI 10.1002/cpa.3160130408
- Andrea Spiro, Lie pseudogroups and locally homogeneous Riemannian spaces, Boll. Un. Mat. Ital. B (7) 6 (1992), no. 4, 843–872 (English, with Italian summary). MR 1200737
- Takeshi Sumitomo, On the commutator of differential operators, Hokkaido Math. J. 1 (1972), 30–42. MR 317238, DOI 10.14492/hokmj/1381759037
- Z. I. Szabo, Spectral theory for operator families on Riemannian manifolds, Differential geometry: Riemannian geometry (Los Angeles, CA, 1990) Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 615–665. MR 1216651, DOI 10.1090/pspum/054.3/1216651
- F. Tricerri, Locally homogeneous Riemannian manifolds, Rend. Sem. Mat. Univ. Politec. Torino 50 (1992), no. 4, 411–426 (1993). Differential geometry (Turin, 1992). MR 1261452
- L. Vanhecke, Geometry in normal and tubular neighborhoods, Rend. Sem. Fac. Sci. Univ. Cagliari 58 (1988), no. suppl., 73–176. Conference on Differential Geometry and Topology (Sardinia, 1988). MR 1122858
- L. Vanhecke and T. J. Willmore, Interaction of tubes and spheres, Math. Ann. 263 (1983), no. 1, 31–42. MR 697328, DOI 10.1007/BF01457081
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
Bibliographic Information
- Friedbert Prüfer
- Affiliation: Universität Leipzig, Fakultät für Mathematik und Informatik, Mathematisches Institut, Augustusplatz 10, D-04109, Leipzig, Germany
- Email: pruefer@mathematik.uni-leipzig.d400.de
- Franco Tricerri
- Affiliation: Universität Leipzig, Fakultät für Mathematik und Informatik, Mathematisches Institut, Augustusplatz 10, D-04109, Leipzig, Germany
- Lieven Vanhecke
- Affiliation: Katholieke Universiteit Leuven, Departement of Mathematics, Celestijnenlaan 200B, B-3001 Leuven, Belgium
- Email: lieven.vanhecke@wis.kuleuven.ac.be
- Received by editor(s): September 26, 1995
- Additional Notes: ${}^\dagger$To our deep sorrow F. Tricceri died in an airplane crash in China on the sixth of June 1995. His contribution to this paper was essential.
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 4643-4652
- MSC (1991): Primary 53C20, 53C25, 53C30
- DOI: https://doi.org/10.1090/S0002-9947-96-01686-8
- MathSciNet review: 1363946