Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



A variational problem for surfaces in
Laguerre geometry

Authors: Emilio Musso and Lorenzo Nicolodi
Journal: Trans. Amer. Math. Soc. 348 (1996), 4321-4337
MSC (1991): Primary 58E40, 53A40, 53A05
MathSciNet review: 1370648
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the variational problem defined by the functional $\int {\frac {{H^{2}-K}}{{K}}}dA$ on immersed surfaces in Euclidean space. Using the invariance of the functional under the group of Laguerre transformations, we study the extremal surfaces by the method of moving frames.

References [Enhancements On Off] (What's this?)

  • 1. L. Bianchi, Opere, v. XI, Corrispondenza, pp. 199--202, Cremonese, Roma, 1959. MR 24:A27
  • 2. W. Blaschke, Über die Geometrie von Laguerre: I. Grundformeln der Flächentheorie, Abh. Math. Sem. Univ. Hamburg 3 (1924), 176--194.
  • 3. ------, Über die Geometrie von Laguerre: II. Flächentheorie in Ebenenkoordinaten, Abh. Math. Sem. Univ. Hamburg 3 (1924), 195--212.
  • 4. ------, Über die Geometrie von Laguerre: III. Beiträge zur Flächentheorie, Abh. Math. Sem. Univ. Hamburg 4 (1925), 1--12.
  • 5. ------, Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie, B. 3, bearbeitet von G. Thomsen, J. Springer, Berlin, 1929.
  • 6. R.L. Bryant, A duality theorem for Willmore surfaces, J. Differential Geom. 20 (1984), 23--53. MR 86j:58029
  • 7. R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmidt, P.A. Griffiths, Exterior differential systems, Mathematical Science Research Institute Publications, Springer-Verlag, New York, Berlin, Heidelberg, 1991. MR 92h:58007
  • 8. E. Cartan, Théorie des groupes finis et continus et la géométrie différentielle traitées par la méthode du repère mobile, Gauthier-Villars, Paris, 1937.
  • 9. T.E. Cecil, Lie sphere geometry: with applications to submanifolds, Springer-Verlag, New York, 1992. MR 94m:53076
  • 10. P.A. Griffiths, On Cartan's method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry, Duke Math. J. 41 (1974), 775--814. MR 53:14355
  • 11. G.R. Jensen, Deformation of submanifolds in homogeneous spaces, J. Differential Geom. 16 (1981), 213--246. MR 83h:53063
  • 12. T. Klotz-Milnor, Harmonic maps and classical surface theory in Minkowski 3-space, Trans. Amer. Math. Soc. 280 (1983), 161--185. MR 85e:58037
  • 13. E. Musso, L. Nicolodi, $L$-minimal canal surfaces, Rend. Matematica 15 (1995), 421--445. CMP 96:04
  • 14. E. Musso, L. Nicolodi, Isothermal surfaces in Laguerre geometry, Boll. Un. Mat. Ital. (to appear).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 58E40, 53A40, 53A05

Retrieve articles in all journals with MSC (1991): 58E40, 53A40, 53A05

Additional Information

Emilio Musso
Affiliation: Dipartimento di Matematica Pura ed Applicata, Università di L’Aquila, via Vetoio, I-67010 Coppito, L’ Aquila, Italy

Lorenzo Nicolodi
Affiliation: Dipartimento di Matematica “G. Castelnuovo", Università di Roma “La Sapienza", p.le A. Moro 2, I-00185 Roma, Italy

Keywords: Laguerre geometry, $L$-minimal surfaces, Legendre surfaces
Received by editor(s): June 16, 1994
Additional Notes: Partially supported by CNR contract n. 93.00554.CTO1, the GADGET initiative of the EC and MURST 40%.
Article copyright: © Copyright 1996 American Mathematical Society