## Infinite products of finite simple groups

HTML articles powered by AMS MathViewer

- by Jan Saxl, Saharon Shelah and Simon Thomas PDF
- Trans. Amer. Math. Soc.
**348**(1996), 4611-4641 Request permission

## Abstract:

We classify the sequences $\langle S_{n} \mid n \in \mathbb {N} \rangle$ of finite simple nonabelian groups such that $\prod _{n} S_{n}$ has uncountable cofinality.## References

- Hyman Bass,
*Some remarks on group actions on trees*, Comm. Algebra**4**(1976), no. 12, 1091–1126. MR**419616**, DOI 10.1080/00927877608822154 - J. L. Brenner,
*Covering theorems for FINASIGs. VIII. Almost all conjugacy classes in ${\cal A}_{n}$ have exponent $\leq {}4$*, J. Austral. Math. Soc. Ser. A**25**(1978), no. 2, 210–214. MR**480718**, DOI 10.1017/s1446788700038799 - Roger W. Carter,
*Simple groups of Lie type*, Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. MR**0407163** - Roger W. Carter,
*Finite groups of Lie type*, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR**794307** - Wilfrid Hodges,
*Model theory*, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, Cambridge, 1993. MR**1221741**, DOI 10.1017/CBO9780511551574 - T. Jech,
*Multiple forcing*, Cambridge Tracts in Mathematics, vol. 88, Cambridge University Press, Cambridge, 1986. MR**895139** - Sabine Koppelberg,
*Boolean algebras as unions of chains of subalgebras*, Algebra Universalis**7**(1977), no. 2, 195–203. MR**434914**, DOI 10.1007/BF02485429 - S. Koppelberg and J. Tits,
*Une propriété des produits directs infinis groupes finis isomorphes*, C. R. Acad. Sci. Paris Sér. A**279**(1974), 583–585. - Kenneth Kunen,
*Set theory*, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam-New York, 1980. An introduction to independence proofs. MR**597342** - H. D. Macpherson and Peter M. Neumann,
*Subgroups of infinite symmetric groups*, J. London Math. Soc. (2)**42**(1990), no. 1, 64–84. MR**1078175**, DOI 10.1112/jlms/s2-42.1.64 - Stephen P. Humphries,
*On reducible braids and composite braids*, Glasgow Math. J.**36**(1994), no. 2, 197–199. MR**1279892**, DOI 10.1017/S0017089500030731 - Afzal Beg,
*On $LC$-, $RC$-, and $C$-loops*, Kyungpook Math. J.**20**(1980), no. 2, 211–215. MR**607061** - Charles Small,
*Arithmetic of finite fields*, Monographs and Textbooks in Pure and Applied Mathematics, vol. 148, Marcel Dekker, Inc., New York, 1991. MR**1186215** - J. D. Sharp and S. Thomas,
*Uniformisation problems and the cofinality of the infinite symmetric group*, Notre Dame Journal of Formal Logic**35**(1994), 328–345. - J. D. Sharp and S. Thomas,
*Unbounded families and the cofinality of the infinite symmetric group*, Arch. Math. Logic**34**(1995), 33–45. - Saharon Shelah,
*Proper forcing*, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR**675955**, DOI 10.1007/978-3-662-21543-2 - Saharon Shelah,
*Vive la différence. I. Nonisomorphism of ultrapowers of countable models*, Set theory of the continuum (Berkeley, CA, 1989) Math. Sci. Res. Inst. Publ., vol. 26, Springer, New York, 1992, pp. 357–405. MR**1233826**, DOI 10.1007/978-1-4613-9754-0_{2}0 - Donald E. Taylor,
*The geometry of the classical groups*, Sigma Series in Pure Mathematics, vol. 9, Heldermann Verlag, Berlin, 1992. MR**1189139** - S. Thomas,
*The cofinalities of the infinite dimensional classical groups*, J. Algebra**179**(1996), 704–719. - Tadasi Nakayama,
*On Frobeniusean algebras. I*, Ann. of Math. (2)**40**(1939), 611–633. MR**16**, DOI 10.2307/1968946 - K. Zsigmondy,
*Zur Theorie der Potenzreste*, Monatsh. Math**3**(1892), 265–284.

## Additional Information

**Jan Saxl**- Affiliation: Department of Pure Mathematics and Mathematical Statistics, Cambridge University, 16 Mill Lane, Cambridge CB2 1SB, England
- Email: j.saxl@pmms.cam.ac.uk
**Saharon Shelah**- Affiliation: Department of Mathematics, The Hebrew University, Jerusalem, Israel
- Address at time of publication: Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903
- MR Author ID: 160185
- ORCID: 0000-0003-0462-3152
- Email: shelah@sunset.ma.huji.ac.il
**Simon Thomas**- Affiliation: Department of Mathematics, Bilkent University, Ankara, Turkey
- Address at time of publication: Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903
- MR Author ID: 195740
- Email: sthomas@math.rutgers.edu
- Received by editor(s): September 21, 1995
- Additional Notes: The research of the second author was partially supported by the U.S.-Israel Binational Science Foundation. This paper is number 584 in the cumulative list of the second author’s publications.

The research of the third author was partially supported by NSF Grants. - © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**348**(1996), 4611-4641 - MSC (1991): Primary 20E15, 20A15; Secondary 03E35, 20D06, 20E08
- DOI: https://doi.org/10.1090/S0002-9947-96-01746-1
- MathSciNet review: 1376555