On the group of homotopy equivalences of a manifold
HTML articles powered by AMS MathViewer
- by Hans Joachim Baues
- Trans. Amer. Math. Soc. 348 (1996), 4737-4773
- DOI: https://doi.org/10.1090/S0002-9947-96-01555-3
- PDF | Request permission
Abstract:
We consider the group of homotopy equivalences $\mathcal E(M)$ of a simply connected manifold $M$ which is part of the fundamental extension of groups due to Barcus-Barratt. We show that the kernel of this extension is always a finite group and we compute this kernel for various examples. This leads to computations of the group $\mathcal E(M)$ for special manifolds $M$, for example if $M$ is a connected sum of products $S^n\times S^m$ of spheres. In particular the group $\mathcal E(S^n\times S^n)$ is determined completely. Also the connection of $\mathcal E(M)$ with the group of isotopy classes of diffeomorphisms of $M$ is studied.References
- J. F. Adams, On the groups $J(X)$. IV, Topology 5 (1966), 21â71. MR 198470, DOI 10.1016/0040-9383(66)90004-8
- Martin Arkowitz, The group of self-homotopy equivalencesâa survey, Groups of self-equivalences and related topics (Montreal, PQ, 1988) Lecture Notes in Math., vol. 1425, Springer, Berlin, 1990, pp. 170â203. MR 1070585, DOI 10.1007/BFb0083840
- M. F. Atiyah, Thom complexes, Proc. London Math. Soc. (3) 11 (1961), 291â310. MR 131880, DOI 10.1112/plms/s3-11.1.291
- M. Aubry and J.-M. Lemaire, Sur certaines Ă©quivalences dâhomotopies, Ann. Inst. Fourier (Grenoble) 41 (1991), no. 1, 173â187 (French, with English summary). MR 1112196, DOI 10.5802/aif.1253
- Hans J. Baues, Obstruction theory on homotopy classification of maps, Lecture Notes in Mathematics, Vol. 628, Springer-Verlag, Berlin-New York, 1977. MR 0467748, DOI 10.1007/BFb0065144
- H. J. Baues, Geometry of loop spaces and the cobar construction, Mem. Amer. Math. Soc. 25 (1980), no. 230, ix+171. MR 567799, DOI 10.1090/memo/0230
- Hans Joachim Baues, Commutator calculus and groups of homotopy classes, London Mathematical Society Lecture Note Series, vol. 50, Cambridge University Press, Cambridge-New York, 1981. MR 634675, DOI 10.1017/CBO9780511662706
- Hans Joachim Baues, Algebraic homotopy, Cambridge Studies in Advanced Mathematics, vol. 15, Cambridge University Press, Cambridge, 1989. MR 985099, DOI 10.1017/CBO9780511662522
- Hans Joachim Baues, Combinatorial homotopy and $4$-dimensional complexes, De Gruyter Expositions in Mathematics, vol. 2, Walter de Gruyter & Co., Berlin, 1991. With a preface by Ronald Brown. MR 1096295, DOI 10.1515/9783110854480
- Hans Joachim Baues, Whitehead Produkte und Hindernisse in dem Produkt von Abbildungskegeln, Arch. Math. (Basel) 25 (1974), 184â197 (German). MR 346785, DOI 10.1007/BF01238662
- Hans Joachim Baues, On homotopy classification problems of J. H. C. Whitehead, Algebraic topology, Göttingen 1984, Lecture Notes in Math., vol. 1172, Springer, Berlin, 1985, pp. 17â55. MR 825772, DOI 10.1007/BFb0074422
- Hans Joachim Baues, Metastable homotopy and homology, Quaestiones Math. 14 (1991), no. 2, 161â178. MR 1107678, DOI 10.1080/16073606.1991.9631634
- Hans Joachim Baues, Quadratic functors and metastable homotopy, J. Pure Appl. Algebra 91 (1994), no. 1-3, 49â107. MR 1255923, DOI 10.1016/0022-4049(94)90135-X
- â, On the homotopy groups of mapping cones, Appendix of âHomotopy Type and Homologyâ, Oxford Math. Monographs, Oxford Univ. Press, 1996, 489 pages.
- H. J. Baues and J. Buth, On the group of homotopy equivalences of simply connected $5$-dimensional manifolds, Math. Z. (to appear).
- Raoul Bott, The stable homotopy of the classical groups, Ann. of Math. (2) 70 (1959), 313â337. MR 110104, DOI 10.2307/1970106
- George Cooke, Replacing homotopy actions by topological actions, Trans. Amer. Math. Soc. 237 (1978), 391â406. MR 461544, DOI 10.1090/S0002-9947-1978-0461544-2
- Tim D. Cochran and Nathan Habegger, On the homotopy theory of simply connected four manifolds, Topology 29 (1990), no. 4, 419â440. MR 1071367, DOI 10.1016/0040-9383(90)90014-B
- W. Dreckmann, Die Relationen der Homotopieoperationen, Diplomarbeit Bonn, 1987.
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611â633. MR 16, DOI 10.2307/1968946
- Michael Hartley Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982), no. 3, 357â453. MR 679066
- Cahit Arf, Untersuchungen ĂŒber reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1â44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- I. M. James, Spaces associated with Stiefel manifolds, Proc. London Math. Soc. (3) 9 (1959), 115â140. MR 102810, DOI 10.1112/plms/s3-9.1.115
- Peter Hilton, Homotopy theory and duality, Gordon and Breach Science Publishers, New York-London-Paris, 1965. MR 0198466
- F. Hirzebruch, W. D. Neumann, and S. S. Koh, Differentiable manifolds and quadratic forms, Lecture Notes in Pure and Applied Mathematics, Vol. 4, Marcel Dekker, Inc., New York, 1971. Appendix II by W. Scharlau. MR 0341499
- P. J. Kahn, Self-equivalences of $(n-1)$-connected $2n$-manifolds, Bull. Amer. Math. Soc. 72 (1966), 562â566. MR 190936, DOI 10.1090/S0002-9904-1966-11542-2
- Peter J. Kahn, Self-equivalences of $(n-1)$-connected $2n$-manifolds, Math. Ann. 180 (1969), 26â47. MR 245031, DOI 10.1007/BF01350084
- Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504â537. MR 148075, DOI 10.1090/S0273-0979-2015-01504-1
- Michel A. Kervaire, Some nonstable homotopy groups of Lie groups, Illinois J. Math. 4 (1960), 161â169. MR 113237
- M. Kreck, Isotopy classes of diffeomorphisms of $(k-1)$-connected almost-parallelizable $2k$-manifolds, Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978), Lecture Notes in Math., vol. 763, Springer, Berlin, 1979, pp. 643â663. MR 561244
- M. E. Mahowald, Some remarks on the Kervaire invariant problem from the homotopy point of view, Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 165â169. MR 0322884
- John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR 0440554, DOI 10.1515/9781400881826
- R. C. Metzler, On Riemann integrability, Amer. Math. Monthly 78 (1971), 1129â1131. MR 299738, DOI 10.2307/2316325
- Frank Quinn, Isotopy of $4$-manifolds, J. Differential Geom. 24 (1986), no. 3, 343â372. MR 868975
- Norichika Sawashita, On the group of self-equivalences of the product of spheres, Hiroshima Math. J. 5 (1975), 69â86. MR 377866
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- M. A. Spivak, Minimization of a Moore automaton, Cybernetics 3 (1967), no. 1, 4â5 (1969). MR 274224, DOI 10.1007/BF01072836
- R. Stöcker, Zur Topologie der Poincaré-RÀume, Habilitationsschrift, UniversitÀt Bochum, 1974.
- Hirosi Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N.J., 1962. MR 0143217
- C. T. C. Wall, A characterization of simple modules over the Steenrod algebra $\textrm {mod}\ 2$, Topology 1 (1962), 249â254. MR 148061, DOI 10.1016/0040-9383(62)90108-8
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712â730. MR 12, DOI 10.2307/1968951
- W. D. Barcus and M. G. Barratt, On the homotopy classification of the extensions of a fixed map, Trans. Amer. Math. Soc. 88 (1958), 57â74. MR 97060, DOI 10.1090/S0002-9947-1958-0097060-7
- ShichirĂŽ Oka, Norichika Sawashita, and Masahiro Sugawara, On the group of self-equivalences of a mapping cone, Hiroshima Math. J. 4 (1974), 9â28. MR 346779
- John W. Rutter, A homotopy classification of maps into an induced fibre space, Topology 6 (1967), 379â403. MR 214070, DOI 10.1016/0040-9383(67)90025-0
Bibliographic Information
- Hans Joachim Baues
- Affiliation: Max Planck Institute for Mathematics, Gottfried-Claren-Strasse 26, 53225 Bonn, Germany
- Email: baues@mpim-bonn.mpg.de
- Received by editor(s): August 17, 1994
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 4737-4773
- MSC (1991): Primary 55O10, 57O50
- DOI: https://doi.org/10.1090/S0002-9947-96-01555-3
- MathSciNet review: 1340168